Murthy J. V., Kim H. H., Hanesworth V. R., Hugdahl J. D., Morejohn L. C.
Department of Botany, University of Texas at Austin, Austin, Texas 78713.
Plant Physiol. 1994 May;105(1):309-320. doi: 10.1104/pp.105.1.309.
Amiprophos-methyl (APM), a phosphoric amide herbicide, was previously reported to inhibit the in vitro polymerization of isolated plant tubulin (L.C. Morejohn, D.E. Fosket [1984] Science 224: 874-876), yet little other biochemical information exists concerning this compound. To characterize further the mechanism of action of APM, its interactions with tubulin and microtubules purified from cultured cells of tobacco (Nicotiana tabacum cv Bright Yellow-2) were investigated. Low micromolar concentrations of APM depolymerized preformed, taxol-stabilized tobacco microtubules. Remarkably, at the lowest APM concentration examined, many short microtubules were redistributed into fewer but 2.7-fold longer microtubules without a substantial decrease in total polymer mass, a result consistent with an end-to-end annealing of microtubules with enhanced kinetic properties. Quasi-equilibrium binding measurements showed that tobacco tubulin binds [14C]oryzalin with high affinity to produce a tubulin-oryzalin complex having a dissociation constant (Kd) = 117 nM (pH 6.9; 23[deg]C). Also, an estimated maximum molar binding stoichiometry of 0.32 indicates pharamacological heterogeneity of tobacco dimers and may be related to structural heterogeneity of tobacco tubulin subunits. APM inhibits competitively the binding of [14C]oryzalin to tubulin with an inhibition constant (Ki) = 5 [mu]M, indicating the formation of a moderate affinity tubulin-APM complex that may interact with the ends of microtubules. APM concentrations inhibiting tobacco cell growth were within the threshold range of APM concentrations that depolymerized cellular microtubules, indicating that growth inhibition is caused by microtubules depolymerization. APM had no apparent effect on microtubules in mouse 3T3 fibroblasts. Because cellular microtubules were depolymerized at APM and oryzalin concentrations below their respective Ki and Kd values, both herbicides are proposed to depolymerize microtubules by a substoichiometric endwise mechanism.
甲基胺草磷(APM)是一种磷酰胺类除草剂,此前有报道称它能抑制离体植物微管蛋白的体外聚合反应(L.C.莫尔约翰、D.E.福斯凯特[1984]《科学》224:874 - 876),然而关于这种化合物的其他生化信息却很少。为了进一步阐明APM的作用机制,研究了它与从烟草(烟草品种Bright Yellow - 2)培养细胞中纯化得到的微管蛋白和微管的相互作用。低微摩尔浓度的APM能使预先形成的、经紫杉醇稳定的烟草微管解聚。值得注意的是,在所检测的最低APM浓度下,许多短微管重新分布形成数量减少但长度增加2.7倍的微管,而聚合物总量没有显著减少,这一结果与具有增强动力学特性的微管端对端退火一致。准平衡结合测量表明,烟草微管蛋白与[14C]氨磺乐灵以高亲和力结合,形成解离常数(Kd) = 117 nM(pH 6.9;23℃)的微管蛋白 - 氨磺乐灵复合物。此外,估计的最大摩尔结合化学计量比为0.32,表明烟草二聚体存在药理学异质性,可能与烟草微管蛋白亚基的结构异质性有关。APM竞争性抑制[14C]氨磺乐灵与微管蛋白的结合,抑制常数(Ki) = 5 μM,这表明形成了一种可能与微管末端相互作用的中等亲和力的微管蛋白 - APM复合物。抑制烟草细胞生长的APM浓度处于使细胞微管解聚的APM浓度阈值范围内,表明生长抑制是由微管解聚引起的。APM对小鼠成纤维细胞3T3中的微管没有明显影响。由于细胞微管在低于各自Ki和Kd值的APM和氨磺乐灵浓度下解聚,因此推测这两种除草剂都是通过亚化学计量的末端机制使微管解聚。