Bolton Eric K, Sayler Gary S, Nivens David E, Rochelle James M, Ripp Steven, Simpson Michael L
Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37916, USA.
Sens Actuators B Chem. 2002 Jun 20;85(1-2):179-85. doi: 10.1016/s0925-4005(02)00106-5.
We report an integrated CMOS microluminometer optimized for the detection of low-level bioluminescence as part of the bioluminescent bioreporter integrated circuit (BBIC). This microluminometer improves on previous devices through careful management of the sub-femtoampere currents, both signal and leakage, that flow in the front-end processing circuitry. In particular, the photodiode is operated with a reverse bias of only a few mV, requiring special attention to the reset circuitry of the current-to-frequency converter (CFC) that forms the front-end circuit. We report a sub-femtoampere leakage current and a minimum detectable signal (MDS) of 0.15 fA (1510 s integration time) using a room temperature 1.47 mm2 CMOS photodiode. This microluminometer can detect luminescence from as few as 5000 fully induced Pseudomonas fluorescens 5RL bacterial cells.
我们报道了一种集成式CMOS微发光计,它是生物发光生物报告器集成电路(BBIC)的一部分,专为检测低水平生物发光而优化。该微发光计通过对前端处理电路中流动的亚飞安级电流(包括信号电流和泄漏电流)进行精细管理,对先前的设备进行了改进。特别是,光电二极管仅在几毫伏的反向偏压下工作,这就需要特别关注构成前端电路的电流-频率转换器(CFC)的复位电路。我们报告了使用室温下面积为1.47平方毫米的CMOS光电二极管时,亚飞安级的泄漏电流和0.15飞安的最小可检测信号(MDS,积分时间为1510秒)。这种微发光计能够检测低至5000个完全诱导的荧光假单胞菌5RL细菌细胞发出的光。