Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Appl Microbiol Biotechnol. 2022 Apr;106(8):2827-2853. doi: 10.1007/s00253-022-11901-6. Epub 2022 Apr 6.
The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. KEY POINTS: • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement.
生物传感器在检测来自各种来源的分子、疾病和污染方面的需求不断发展。这种需求促使人们开发出使用生物传感元件作为生物传感器的精确和强大的分析设备。生物传感器具有快速检测的优势,可以胜过传统方法来检测相同的分子。基于生物化学发光的传感器在生物免疫分析系统中使用时非常灵敏。光学生物传感器随着时间的推移而不断涌现,因为它们具有随折射率变化而作用的优势。基于碳纳米管的传感器在生物传感器领域也具有重要作用。生物发光比经典化学发光具有更高的量子产率。电致生物发光具有微型尺寸的优势,可以产生高信噪比和可控的发射。涉及荧光标记纳米材料的生物技术和仪器的最新进展提高了生物传感器的灵敏度极限。集成方法为开发具有高再生潜力的特定和敏感生物传感器提供了更好的前景。本文主要关注对临床和环境应用中与多种分子检测相关的传感器。
关键点: • 本文综述了基于发光、表面等离子体共振、碳纳米管和石墨烯的生物传感器的应用。 • 对生物传感器在临床、环境、农业和食品工业方面的潜在应用/用途进行了批判性评价。 • 讨论了该领域目前的局限性以及未来发展的前景。
Appl Microbiol Biotechnol. 2022-4
Crit Rev Anal Chem. 2019-1-16
Angew Chem Int Ed Engl. 2010-3-15
Nanoscale. 2022-1-20
Biosens Bioelectron. 2015-6-19
Sensors (Basel). 2020-6-23
Biosensors (Basel). 2021-11-29
Adv Drug Deliv Rev. 2013-7-29
Biosens Bioelectron. 2022-2-1
Nanomaterials (Basel). 2025-6-26
Front Bioeng Biotechnol. 2024-11-6
Front Chem. 2024-9-10
ACS Omega. 2024-7-5
Light Sci Appl. 2023-12-6
Sensors (Basel). 2021-11-24
Sensors (Basel). 2021-4-6
Environ Sci Technol. 2021-2-2
Biosens Bioelectron. 2021-3-15
Biosens Bioelectron. 2020-4-12