Suppr超能文献

高效信号传导速率需要光敏色素B的两个空间上不同的小区域。

Two Small Spatially Distinct Regions of Phytochrome B Are Required for Efficient Signaling Rates.

作者信息

Wagner D., Koloszvari M., Quail P. H.

机构信息

Department of Plant Biology, University of California-Berkeley, Berkeley, California 94720.

出版信息

Plant Cell. 1996 May;8(5):859-871. doi: 10.1105/tpc.8.5.859.

Abstract

We used a series of in vitro-generated deletion and amino acid substitution derivatives of phytochrome B (phyB) expressed in transgenic Arabidopsis to identify regions of the molecule important for biological activity. Expression of the chromophore-bearing N-terminal domain of phyB alone resulted in a fully photoactive, monomeric molecule lacking normal regulatory activity. Expression of the C-terminal domain alone resulted in a photoinactive, dimeric molecule, also lacking normal activity. Thus, both domains are necessary, but neither is sufficient for phyB activity. Deletion of a small region on each major domain (residues 6 to 57 and 652 to 712, respectively) was shown to compromise phyB activity differentially without interfering with spectral activity or dimerization. Deletion of residues 6 to 57 caused a large increase in the fluence rate of continuous red light (Rc) required for maximal seedling responsiveness, indicating a marked decrease in efficiency of light signal perception or processing per mole of mutant phyB. In contrast, deletion of residues 652 to 712 resulted in a photoreceptor that retained saturation of seedling responsiveness to Rc at low fluence rates but at a response level much below the maximal response elicited by the parent molecule. This deletion apparently reduces the maximal biological activity per mole of phyB without a major decrease in efficiency of signal perception, thus suggesting disruption of a process downstream of signal perception. In addition, certain phyB constructs caused dominant negative interference with endogenous phyA activity in continuous far-red light, suggesting that the two photoreceptors may share reaction partners.

摘要

我们利用一系列在转基因拟南芥中表达的体外生成的植物光敏色素B(phyB)缺失和氨基酸取代衍生物,来确定该分子中对生物活性重要的区域。单独表达带有发色团的phyB N端结构域会产生一个完全具有光活性的单体分子,但缺乏正常的调节活性。单独表达C端结构域会产生一个无光活性的二聚体分子,同样缺乏正常活性。因此,两个结构域都是必需的,但对于phyB活性而言,单独一个都不充分。结果表明,在每个主要结构域上缺失一个小区域(分别为第6至57位和第652至712位残基)会不同程度地损害phyB活性,而不影响光谱活性或二聚化。缺失第6至57位残基会导致幼苗最大反应所需的连续红光(Rc)通量率大幅增加,这表明每摩尔突变型phyB的光信号感知或处理效率显著降低。相比之下,缺失第652至712位残基会产生一种光受体,该光受体在低通量率下对Rc仍能保持幼苗反应的饱和状态,但反应水平远低于亲本分子引发的最大反应。这种缺失显然降低了每摩尔phyB的最大生物活性,而信号感知效率没有大幅下降,因此表明信号感知下游的一个过程受到了破坏。此外,某些phyB构建体在连续远红光下对内源phyA活性产生显性负干扰,这表明这两种光受体可能共享反应伙伴。

相似文献

4
A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light.
Mol Plant. 2008 Jan;1(1):84-102. doi: 10.1093/mp/ssm010. Epub 2007 Oct 31.
5
A non-covalently attached chromophore can mediate phytochrome B signaling in Arabidopsis.
Plant Cell Physiol. 2011 Dec;52(12):2088-102. doi: 10.1093/pcp/pcr139. Epub 2011 Oct 17.
7
Dimers of the N-terminal domain of phytochrome B are functional in the nucleus.
Nature. 2003 Jul 31;424(6948):571-4. doi: 10.1038/nature01837.
9
Phytochrome-mediated inhibition of coleoptile growth in rice: age-dependency and action spectra.
Photochem Photobiol. 2007 Jan-Feb;83(1):131-8. doi: 10.1562/2006-03-17-RA-850.

引用本文的文献

3
Out of the Dark and Into the Light: A New View of Phytochrome Photobodies.
Front Plant Sci. 2021 Aug 31;12:732947. doi: 10.3389/fpls.2021.732947. eCollection 2021.
4
is a novel allele of present in the T-DNA line SALK_015201.
Plant Direct. 2021 Jun 12;5(6):e00326. doi: 10.1002/pld3.326. eCollection 2021 Jun.
5
Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B.
Plant Direct. 2020 Apr 27;4(4):e00210. doi: 10.1002/pld3.210. eCollection 2020 Apr.
6
PHYTOCHROME INTERACTING FACTOR8 Inhibits Phytochrome A-Mediated Far-Red Light Responses in Arabidopsis.
Plant Cell. 2020 Jan;32(1):186-205. doi: 10.1105/tpc.19.00515. Epub 2019 Nov 15.
8
From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes.
J Plant Res. 2016 Mar;129(2):123-35. doi: 10.1007/s10265-016-0789-0. Epub 2016 Jan 27.
10
Light-induced Changes in the Dimerization Interface of Bacteriophytochromes.
J Biol Chem. 2015 Jun 26;290(26):16383-92. doi: 10.1074/jbc.M115.650127. Epub 2015 May 13.

本文引用的文献

2
Synthesis of phytochrome apoprotein and chromophore are not coupled obligatorily.
Plant Physiol. 1986 Aug;81(4):1014-6. doi: 10.1104/pp.81.4.1014.
3
Expression of a functional monocotyledonous phytochrome in transgenic tobacco.
EMBO J. 1989 Apr;8(4):1005-12. doi: 10.1002/j.1460-2075.1989.tb03467.x.
4
Rice Phytochrome Is Biologically Active in Transgenic Tobacco.
Plant Cell. 1989 Aug;1(8):775-782. doi: 10.1105/tpc.1.8.775.
5
Oat Phytochrome Is Biologically Active in Transgenic Tomatoes.
Plant Cell. 1989 Aug;1(8):765-773. doi: 10.1105/tpc.1.8.765.
6
Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis.
Plant Cell. 1991 Dec;3(12):1275-1288. doi: 10.1105/tpc.3.12.1275.
7
The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B.
Plant Cell. 1991 Dec;3(12):1263-1274. doi: 10.1105/tpc.3.12.1263.
8
Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A.
Plant Physiol. 1993 May;102(1):269-277. doi: 10.1104/pp.102.1.269.
9
Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis.
Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10806-10. doi: 10.1073/pnas.88.23.10806.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验