Suppr超能文献

用于细颗粒物污染(PM10和PM2.5)预测的人工神经网络评估。

Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting.

作者信息

McKendry Ian G

机构信息

Department of Geography, The University of British Columbia, Vancouver, Canada.

出版信息

J Air Waste Manag Assoc. 2002 Sep;52(9):1096-101. doi: 10.1080/10473289.2002.10470836.

Abstract

Multi-layer perceptron (MLP) artificial neural network (ANN) models are compared with traditional multiple regression (MLR) models for daily maximum and average O3 and particulate matter (PM10 and PM2.5) forecasting. MLP particulate forecasting models show little if any improvement over MLR models and exhibit less skill than do O3 forecasting models. Meteorological variables (precipitation, wind, and temperature), persistence, and co-pollutant data are shown to be useful PM predictors. If MLP approaches are adopted for PM forecasting, training methods that improve extreme value prediction are recommended.

摘要

将多层感知器(MLP)人工神经网络(ANN)模型与传统多元回归(MLR)模型进行比较,以预测每日的O3最大值和平均值以及颗粒物(PM10和PM2.5)。MLP颗粒物预测模型与MLR模型相比几乎没有改进,并且其技能不如O3预测模型。气象变量(降水、风速和温度)、持续性和共污染物数据被证明是有用的PM预测指标。如果采用MLP方法进行PM预测,建议采用能改进极值预测的训练方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验