Gulati Sumita, Bansal Anshul, Pal Ashok, Mittal Nitin, Sharma Abhishek, Gared Fikreselam
Department of Mathematics, S. A. Jain College, Ambala, Haryana, 134003, India.
Department of Chemistry, S. A. Jain College, Ambala, Haryana, 134003, India.
Sci Rep. 2023 Dec 19;13(1):22578. doi: 10.1038/s41598-023-49717-7.
The accurate prediction of air pollutants, particularly Particulate Matter (PM), is critical to support effective and persuasive air quality management. Numerous variables influence the prediction of PM, and it's crucial to combine the most relevant input variables to ensure the most dependable predictions. This study aims to address this issue by utilizing correlation coefficients to select the most pertinent input and output variables for an air pollution model. In this work, PM concentration is estimated by employing concentrations of sulfur dioxide, nitrogen dioxide, and PM found in the air through the application of Artificial Neural Networks (ANNs). The proposed approach involves the comparison of three ANN models: one trained with the Levenberg-Marquardt algorithm (LM-ANN), another with the Bayesian Regularization algorithm (BR-ANN), and a third with the Scaled Conjugate Gradient algorithm (SCG-ANN). The findings revealed that the LM-ANN model outperforms the other two models and even surpasses the Multiple Linear Regression method. The LM-ANN model yields a higher R value of 0.8164 and a lower RMSE value of 9.5223.
准确预测空气污染物,尤其是颗粒物(PM),对于支持有效且有说服力的空气质量管理至关重要。众多变量会影响PM的预测,结合最相关的输入变量以确保最可靠的预测结果至关重要。本研究旨在通过利用相关系数为空气污染模型选择最相关的输入和输出变量来解决这一问题。在这项工作中,通过应用人工神经网络(ANNs),利用空气中二氧化硫、二氧化氮和PM的浓度来估算PM浓度。所提出的方法涉及比较三种ANN模型:一种采用Levenberg-Marquardt算法训练(LM-ANN),另一种采用贝叶斯正则化算法(BR-ANN),第三种采用缩放共轭梯度算法(SCG-ANN)。研究结果表明,LM-ANN模型优于其他两种模型,甚至超过了多元线性回归方法。LM-ANN模型的R值更高,为0.8164,RMSE值更低,为9.5223。