Gao Zhanguo, Hwang Daniel, Bataille Fredly, Lefevre Michael, York David, Quon Michael J, Ye Jianping
Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808, USA.
J Biol Chem. 2002 Dec 13;277(50):48115-21. doi: 10.1074/jbc.M209459200. Epub 2002 Sep 25.
Insulin resistance contributes importantly to the pathophysiology of type 2 diabetes mellitus. One mechanism mediating insulin resistance may involve the phosphorylation of serine residues in insulin receptor substrate-1 (IRS-1), leading to impairment in the ability of IRS-1 to activate downstream phosphatidylinositol 3-kinase-dependent pathways. Insulin-resistant states and serine phosphorylation of IRS-1 are associated with the activation of the inhibitor kappaB kinase (IKK) complex. However, the precise molecular mechanisms by which IKK may contribute to the development of insulin resistance are not well understood. In this study, using phosphospecific antibodies against rat IRS-1 phosphorylated at Ser(307) (equivalent to Ser(312) in human IRS-1), we observed serine phosphorylation of IRS-1 in response to TNF-alpha or calyculin A treatment that paralleled surrogate markers for IKK activation. The phosphorylation of human IRS-1 at Ser(312) in response to tumor necrosis factor-alpha was significantly reduced in cells pretreated with the IKK inhibitor 15 deoxy-prostaglandin J(2) as well as in cells derived from IKK knock-out mice. We observed interactions between endogenous IRS-1 and IKK in intact cells using a co-immunoprecipitation approach. Moreover, this interaction between IRS-1 and IKK in the basal state was reduced upon IKK activation and increased serine phosphorylation of IRS-1. Data from in vitro kinase assays using recombinant IRS-1 as a substrate were consistent with the ability of IRS-1 to function as a direct substrate for IKK with multiple serine phosphorylation sites in addition to Ser(312). Taken together, our data suggest that IRS-1 is a novel direct substrate for IKK and that phosphorylation of IRS-1 at Ser(312) (and other sites) by IKK may contribute to the insulin resistance mediated by activation of inflammatory pathways.
胰岛素抵抗在2型糖尿病的病理生理过程中起重要作用。介导胰岛素抵抗的一种机制可能涉及胰岛素受体底物-1(IRS-1)中丝氨酸残基的磷酸化,导致IRS-1激活下游磷脂酰肌醇3-激酶依赖性途径的能力受损。胰岛素抵抗状态和IRS-1的丝氨酸磷酸化与抑制蛋白κB激酶(IKK)复合物的激活有关。然而,IKK可能导致胰岛素抵抗发生的确切分子机制尚不清楚。在本研究中,我们使用针对Ser(307)(相当于人类IRS-1中的Ser(312))磷酸化的大鼠IRS-1的磷酸特异性抗体,观察到IRS-1的丝氨酸磷酸化响应肿瘤坏死因子-α(TNF-α)或花萼海绵诱癌素A(calyculin A)处理,这与IKK激活的替代标志物平行。在用IKK抑制剂15-脱氧前列腺素J(2)预处理的细胞以及来自IKK基因敲除小鼠的细胞中,响应肿瘤坏死因子-α时人类IRS-1在Ser(312)处的磷酸化显著降低。我们使用共免疫沉淀方法在完整细胞中观察到内源性IRS-1和IKK之间的相互作用。此外,在基础状态下,IRS-1和IKK之间的这种相互作用在IKK激活后减少,而IRS-1的丝氨酸磷酸化增加。使用重组IRS-1作为底物的体外激酶分析数据与IRS-1作为IKK的直接底物的能力一致,除了Ser(312)外还有多个丝氨酸磷酸化位点。综上所述,我们的数据表明IRS-1是IKK的一种新型直接底物,并且IKK对IRS-1在Ser(312)(以及其他位点)的磷酸化可能导致由炎症途径激活介导的胰岛素抵抗。