Suppr超能文献

Engineering water to act as an active site acid catalyst in a soluble fumarate reductase.

作者信息

Mowat Christopher G, Pankhurst Katherine L, Miles Caroline S, Leys David, Walkinshaw Malcolm D, Reid Graeme A, Chapman Stephen K

机构信息

Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, U.K.

出版信息

Biochemistry. 2002 Oct 8;41(40):11990-6. doi: 10.1021/bi0203177.

Abstract

The ability of an arginine residue to function as the active site acid catalyst in the fumarate reductase family of enzymes is now well-established. Recently, a dual role for the arginine during fumarate reduction has been proposed [Mowat, C. G., Moysey, R., Miles, C. S., Leys, D., Doherty, M. K., Taylor, P., Walkinshaw, M. D., Reid, G. A., and Chapman, S. K. (2001) Biochemistry 40, 12292-12298] in which it acts both as a Lewis acid in transition-state stabilization and as a Brønsted acid in proton delivery. This proposal has led to the prediction that, if appropriately positioned, a water molecule would be capable of functioning as the active site Brønsted acid. In this paper, we describe the construction and kinetic and crystallographic analysis of the Q363F single mutant and Q363F/R402A double mutant forms of flavocytochrome c(3), the soluble fumarate reductase from Shewanella frigidimarina. Although replacement of the active site acid, Arg402, with alanine has been shown to eliminate fumarate reductase activity, this phenomenon is partially reversed by the additional substitution of Gln363 with phenylalanine. This Gln --> Phe substitution in the inactive R402A mutant enzyme was designed to "push" a water molecule close enough to the substrate C3 atom to allow it to act as a Brønsted acid. The 2.0 A resolution crystal structure of the Q363F/R402A mutant enzyme does indeed reveal the introduction of a water molecule at the correct position in the active site to allow it to act as the catalytic proton donor. The 1.8 A resolution crystal structure of the Q363F mutant enzyme shows a water molecule similarly positioned, which can account for its measured fumarate reductase activity. However, in this mutant enzyme Michaelis complex formation is impaired due to significant and unpredicted structural changes at the active site.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验