Lewis John E, Maler Leonard
Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
J Neurophysiol. 2002 Oct;88(4):1695-706. doi: 10.1152/jn.2002.88.4.1695.
The dynamics of neuronal feedback pathways are generally not well understood. This is due to the complexity arising from the combined dynamics of closed-loop feedback systems and the synaptic plasticity of feedback connections. Here, we investigate the short-term synaptic dynamics underlying the parallel fiber feedback pathway to a primary electrosensory nucleus in the weakly electric fish, Apteronotus leptorhynchus. In open-loop conditions, the dynamics of this pathway arise from a monosynaptic excitatory connection and a disynaptic (feed-forward) inhibitory connection to pyramidal neurons in the electrosensory lateral line lobe (ELL). In a brain slice preparation of the ELL, we characterized the synaptic responses of pyramidal neurons to short trains of electrical stimuli delivered to the parallel fibers of the dorsal molecular layer. Stimulus trains consisted of 20 pulses, at either random intervals or constant intervals, with varying mean frequencies. With random trains, pyramidal neuron responses were well described by a single exponential function of the inter-stimulus interval-suggesting a single facilitation-like process underlies these synaptic dynamics. However, responses to periodic (constant interval) trains deviated from this simple description. Random and periodic stimulus trains delivered when the feed-forward inhibitory component of this pathway was pharmacologically blocked revealed that inhibition and depression also contribute to the observed dynamics. We formulated a simple model of the parallel fiber synaptic dynamics that provided an accurate description of our data. The model dynamics resulted from a combination of three distinct processes. Two of the processes are the classically-described synaptic facilitation and depression, and the third is a novel description of feed-forward inhibition. An analysis of this model suggests that synaptic pathways combining plasticity with feed-forward inhibition can be easily tuned to signal different types of transient stimuli and thus lead to diverse and nonintuitive filtering properties.
神经元反馈通路的动力学通常尚未得到很好的理解。这是由于闭环反馈系统的组合动力学和反馈连接的突触可塑性所产生的复杂性所致。在这里,我们研究弱电鱼线翎电鳗(Apteronotus leptorhynchus)中平行纤维反馈通路至初级电感觉核的短期突触动力学。在开环条件下,该通路的动力学源于单突触兴奋性连接和到电感觉侧线叶(ELL)中锥体神经元的双突触(前馈)抑制性连接。在ELL的脑片制备中,我们表征了锥体神经元对施加到背侧分子层平行纤维的短串电刺激的突触反应。刺激串由20个脉冲组成,脉冲间隔随机或恒定,平均频率各不相同。对于随机串刺激,锥体神经元的反应可以用刺激间隔的单指数函数很好地描述,这表明这些突触动力学背后存在单一的促进样过程。然而,对周期性(恒定间隔)串刺激的反应偏离了这种简单描述。当该通路的前馈抑制成分被药理学阻断时施加随机和周期性刺激串,结果表明抑制和抑制也有助于观察到的动力学。我们构建了一个平行纤维突触动力学的简单模型,该模型对我们的数据提供了准确的描述。模型动力学源于三个不同过程的组合。其中两个过程是经典描述的突触易化和抑制,第三个是对前馈抑制的新描述。对该模型的分析表明,将可塑性与前馈抑制相结合的突触通路可以很容易地调整以信号不同类型的瞬态刺激,从而导致多样且非直观的滤波特性。