Luo Li-Shi, Girimaji Sharath S
ICASE, Mail Stop 132C, NASA Langley Research Center, 3 West Reid Street, Building 1152, Hampton, Virginia 23681-2199, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2A):035301. doi: 10.1103/PhysRevE.66.035301. Epub 2002 Sep 27.
An a priori derivation of the lattice Boltzmann equations for binary mixtures is provided by discretizing the Boltzmann equations that govern the evolution of binary mixtures. The present model leads to a set of two-fluid hydrodynamic equations for the mixture. In existing models, employing the single-relaxation-time approximation, the viscosity and diffusion coefficients are coupled through the relaxation parameter tau, thus limited to unity Prandtl number and Schmidt number. In the present model the viscosity and diffusion coefficient are independently controlled by two relaxation parameters, thus enabling the modeling of mixtures with an arbitrary Schmidt number. The theoretical framework developed here can be readily applied to multiple-species mixing.
通过对描述二元混合物演化的玻尔兹曼方程进行离散化,给出了二元混合物格子玻尔兹曼方程的先验推导。当前模型导出了一组混合物的双流体动力学方程。在现有的采用单弛豫时间近似的模型中,粘度和扩散系数通过弛豫参数τ耦合,因此限于普朗特数和施密特数为1。在当前模型中,粘度和扩散系数由两个弛豫参数独立控制,从而能够对具有任意施密特数的混合物进行建模。这里建立的理论框架可以很容易地应用于多组分混合。