Panja Debabrata, van Saarloos Wim
Instituut-Lorentz, Universiteit Leiden, Postbus 9506, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2A):036206. doi: 10.1103/PhysRevE.66.036206. Epub 2002 Sep 18.
Recently, it has been shown that when an equation that allows the so-called pulled fronts in the mean-field limit is modeled with a stochastic model with a finite number N of particles per correlation volume, the convergence to the speed v() for N--> infinity is extremely slow-going only as ln(-2)N. Pulled fronts are fronts that propagate into an unstable state, and the asymptotic front speed is equal to the linear spreading speed v() of small linear perturbations about the unstable state. In this paper, we study the front propagation in a simple stochastic lattice model. A detailed analysis of the microscopic picture of the front dynamics shows that for the description of the far tip of the front, one has to abandon the idea of a uniformly translating front solution. The lattice and finite particle effects lead to a "stop-and-go" type dynamics at the far tip of the front, while the average front behind it "crosses over" to a uniformly translating solution. In this formulation, the effect of stochasticity on the asymptotic front speed is coded in the probability distribution of the times required for the advancement of the "foremost bin." We derive expressions of these probability distributions by matching the solution of the far tip with the uniformly translating solution behind. This matching includes various correlation effects in a mean-field type approximation. Our results for the probability distributions compare well to the results of stochastic numerical simulations. This approach also allows us to deal with much smaller values of N than it is required to have the ln(-2)N asymptotics to be valid. Furthermore, we show that if one insists on using a uniformly translating solution for the entire front ignoring its breakdown at the far tip, then one can obtain a simple expression for the corrections to the front speed for finite values of N, in which various subdominant contributions have a clear physical interpretation.
最近有研究表明,当在平均场极限下允许所谓的牵引前沿的方程用每个相关体积中具有有限数量(N)个粒子的随机模型进行建模时,对于(N\to\infty),收敛到速度(v())极其缓慢,仅为(\ln(-2)N)。牵引前沿是传播到不稳定状态的前沿,渐近前沿速度等于关于不稳定状态的小线性扰动的线性传播速度(v())。在本文中,我们研究了一个简单随机晶格模型中的前沿传播。对前沿动力学微观图像的详细分析表明,为了描述前沿的远尖端,必须摒弃均匀平移前沿解的概念。晶格和有限粒子效应导致前沿远尖端处出现“走走停停”型动力学,而其后面的平均前沿“过渡”到均匀平移解。在此表述中,随机性对渐近前沿速度的影响编码在“最前面的格点”前进所需时间的概率分布中。我们通过将远尖端的解与后面的均匀平移解相匹配来推导这些概率分布的表达式。这种匹配包括平均场型近似中的各种相关效应。我们得到的概率分布结果与随机数值模拟结果吻合良好。这种方法还使我们能够处理比使(\ln(-2)N)渐近有效所需的(N)值小得多的值。此外,我们表明,如果坚持对整个前沿使用均匀平移解而忽略其在远尖端的失效,那么对于有限(N)值,可以得到前沿速度修正的简单表达式,其中各种次主导贡献具有明确的物理解释。