Moro Esteban
Grupo Interdisciplinar de Sistemas Complejos and Departmento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganés, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):060101. doi: 10.1103/PhysRevE.69.060101. Epub 2004 Jun 2.
We study the propagation of pulled fronts in the A<--> A+A microscopic reaction-diffusion process using Monte Carlo simulations. In the mean field approximation the process is described by the deterministic Fisher-Kolmogorov-Petrovsky-Piscounov equation. In particular, we concentrate on the corrections to the deterministic behavior due to the number of particles per correlated volume Omega. By means of a hybrid simulation scheme, we manage to reach large macroscopic values of Omega, which allows us to show the importance in the dynamics of microscopic pulled fronts of the interplay of microscopic fluctuations and their macroscopic relaxation.
我们使用蒙特卡罗模拟研究了在A<-->A+A微观反应扩散过程中拖曳前沿的传播。在平均场近似下,该过程由确定性的费舍尔-柯尔莫哥洛夫-彼得罗夫斯基-皮斯库诺夫方程描述。特别地,我们关注由于每个关联体积Ω中的粒子数而对确定性行为的修正。通过一种混合模拟方案,我们成功地达到了Ω的大宏观值,这使我们能够展示微观涨落及其宏观弛豫之间的相互作用在微观拖曳前沿动力学中的重要性。