Kleinekathöfer Ulrich, Kondov Ivan, Schreiber Michael
International University Bremen, P.O. Box 750 561, 28725 Bremen, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2B):037701. doi: 10.1103/PhysRevE.66.037701. Epub 2002 Sep 3.
A method for stochastic unraveling of general time-local quantum master equations (QME) which involve the reduced density operator at time t only is proposed. The present kind of jump algorithm enables a numerically efficient treatment of QMEs that are not of Lindblad form. So it opens large fields of application for stochastic methods. The unraveling can be achieved by allowing for trajectories with negative weight. We present results for the quantum Brownian motion and the Redfield QMEs as test examples. The algorithm can also unravel non-Markovian QMEs when they are in a time-local form like in the time-convolutionless formalism.
提出了一种用于随机拆解一般时间局部量子主方程(QME)的方法,该方程仅涉及时刻t的约化密度算符。这种跳跃算法使得对非林德布拉德形式的QME进行数值有效处理成为可能。因此,它为随机方法开辟了广阔的应用领域。通过允许具有负权重的轨迹可以实现拆解。我们给出了量子布朗运动和雷德菲尔德QME的结果作为测试示例。当非马尔可夫QME处于时间局部形式(如无时间卷积形式体系)时,该算法也可以对其进行拆解。