Presley Bodnar Alice L, Gilbert Eric J, Yoburn Joshua C, Van Vranken David L
Pharmacia Corp., Kalamazoo, MI 49001, USA.
J Pept Sci. 2002 Sep;8(9):510-20. doi: 10.1002/psc.417.
Recent studies of peptide dimers linked by Trp-Trp (ditryptophan) crosslinks suggest that the crosslinks can reinforce antiparallel beta-structure. Depending on environment, gramicidins A, B and C form either helical ion channels with parallel beta-structure or non-functional pores with antiparallel beta-structure. In the channel conformation of the gramicidins Trp9 and Trp15 are close in space, but in the pore conformation Trp9 and Trp15 are far apart. We hypothesized that a ditryptophan crosslink between Trp9 and Trp15 could pre-organize gramicidin in an active conformation. To test the potential for preorganization, an intramolecular ditryptophan crosslink was formed between Trp9 and Trp15 in a W13F mutant of gramicidin B. Photooxidative conditions were shown to generate ditryptophan crosslinks in low yields. While not preparatively useful, photooxidative tryptophan crosslinking may have implications for protein aging processes like cataract formation. The ditryptophan crosslink in the gramicidin B mutant substantially lowered the antibiotic activity of the gramicidin B mutant, unlike the ditryptophan crosslink in the antibiotic X-indolicidin. The biaryl chromophore generated diagnostic Cotton effects in the CD spectrum that revealed the absolute stereochemistry of the biaryl chromophore, but the biaryl chromophore obscured diagnostic features below 220 nm. However, changes in peptide conformation were reflected in changes in the biaryl region of the CD spectrum above 240 nm.
近期对由色氨酸 - 色氨酸(二色氨酸)交联连接的肽二聚体的研究表明,这种交联可以增强反平行β结构。根据环境不同,短杆菌肽A、B和C会形成具有平行β结构的螺旋离子通道或具有反平行β结构的无功能孔道。在短杆菌肽的通道构象中,色氨酸9和色氨酸15在空间上靠近,但在孔道构象中,色氨酸9和色氨酸15相距很远。我们推测色氨酸9和色氨酸15之间的二色氨酸交联可以使短杆菌肽预先形成活性构象。为了测试预组织的可能性,在短杆菌肽B的W13F突变体中,色氨酸9和色氨酸15之间形成了分子内二色氨酸交联。光氧化条件显示可低产率地生成二色氨酸交联。虽然在制备上没有用处,但光氧化色氨酸交联可能对诸如白内障形成等蛋白质老化过程有影响。与抗生素X - 吲哚杀菌素中的二色氨酸交联不同,短杆菌肽B突变体中的二色氨酸交联大大降低了短杆菌肽B突变体的抗生素活性。联芳基发色团在圆二色光谱中产生了诊断性的科顿效应,揭示了联芳基发色团的绝对立体化学,但联芳基发色团掩盖了220 nm以下的诊断特征。然而,肽构象的变化反映在圆二色光谱240 nm以上的联芳基区域的变化中。