Suppr超能文献

通过文献剖析挖掘微阵列表达数据。

Mining microarray expression data by literature profiling.

作者信息

Chaussabel Damien, Sher Alan

机构信息

Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Genome Biol. 2002 Sep 13;3(10):RESEARCH0055. doi: 10.1186/gb-2002-3-10-research0055.

Abstract

BACKGROUND

The rapidly expanding fields of genomics and proteomics have prompted the development of computational methods for managing, analyzing and visualizing expression data derived from microarray screening. Nevertheless, the lack of efficient techniques for assessing the biological implications of gene-expression data remains an important obstacle in exploiting this information.

RESULTS

To address this need, we have developed a mining technique based on the analysis of literature profiles generated by extracting the frequencies of certain terms from thousands of abstracts stored in the Medline literature database. Terms are then filtered on the basis of both repetitive occurrence and co-occurrence among multiple gene entries. Finally, clustering analysis is performed on the retained frequency values, shaping a coherent picture of the functional relationship among large and heterogeneous lists of genes. Such data treatment also provides information on the nature and pertinence of the associations that were formed.

CONCLUSIONS

The analysis of patterns of term occurrence in abstracts constitutes a means of exploring the biological significance of large and heterogeneous lists of genes. This approach should contribute to optimizing the exploitation of microarray technologies by providing investigators with an interface between complex expression data and large literature resources.

摘要

背景

基因组学和蛋白质组学领域的迅速扩展促使了用于管理、分析和可视化来自微阵列筛选的表达数据的计算方法的发展。然而,缺乏评估基因表达数据生物学意义的有效技术仍然是利用这些信息的一个重要障碍。

结果

为满足这一需求,我们开发了一种挖掘技术,该技术基于对文献概况的分析,通过从存储在Medline文献数据库中的数千篇摘要中提取特定术语的频率来生成文献概况。然后根据多个基因条目中的重复出现和共现情况对术语进行筛选。最后,对保留的频率值进行聚类分析,形成一幅关于大量异质基因列表之间功能关系的连贯图景。这种数据处理还提供了关于所形成关联的性质和相关性的信息。

结论

对摘要中术语出现模式的分析构成了探索大量异质基因列表生物学意义的一种手段。这种方法应有助于通过为研究人员提供复杂表达数据与大量文献资源之间的接口来优化微阵列技术的利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e09b/134484/d956fdedb137/gb-2002-3-10-research0055-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验