Suppr超能文献

自举聚类分析:评估微阵列实验结论的可靠性。

Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments.

作者信息

Kerr M K, Churchill G A

机构信息

The Jackson Laboratory, Bar Harbor, ME 04609, USA.

出版信息

Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):8961-5. doi: 10.1073/pnas.161273698. Epub 2001 Jul 24.

Abstract

We introduce a general technique for making statistical inference from clustering tools applied to gene expression microarray data. The approach utilizes an analysis of variance model to achieve normalization and estimate differential expression of genes across multiple conditions. Statistical inference is based on the application of a randomization technique, bootstrapping. Bootstrapping has previously been used to obtain confidence intervals for estimates of differential expression for individual genes. Here we apply bootstrapping to assess the stability of results from a cluster analysis. We illustrate the technique with a publicly available data set and draw conclusions about the reliability of clustering results in light of variation in the data. The bootstrapping procedure relies on experimental replication. We discuss the implications of replication and good design in microarray experiments.

摘要

我们介绍了一种用于从应用于基因表达微阵列数据的聚类工具进行统计推断的通用技术。该方法利用方差分析模型来实现归一化,并估计多个条件下基因的差异表达。统计推断基于一种随机化技术——自展法的应用。自展法此前已被用于获取单个基因差异表达估计值的置信区间。在这里,我们应用自展法来评估聚类分析结果的稳定性。我们用一个公开可用的数据集说明了该技术,并根据数据中的变化对聚类结果的可靠性得出结论。自展程序依赖于实验重复。我们讨论了微阵列实验中重复和良好设计的意义。

相似文献

6
Adding confidence to gene expression clustering.增强基因表达聚类的可信度。
Genetics. 2005 Aug;170(4):2003-11. doi: 10.1534/genetics.104.031500. Epub 2005 Jun 8.

引用本文的文献

5
Stability estimation for unsupervised clustering: A review.无监督聚类的稳定性估计:综述
Wiley Interdiscip Rev Comput Stat. 2022 Nov-Dec;14(6):e1575. doi: 10.1002/wics.1575. Epub 2022 Jan 9.
6
A framework for stability-based module detection in correlation graphs.相关图中基于稳定性的模块检测框架。
Stat Anal Data Min. 2021 Apr;14(2):129-143. doi: 10.1002/sam.11495. Epub 2021 Jan 8.

本文引用的文献

2
Experimental design for gene expression microarrays.基因表达微阵列的实验设计。
Biostatistics. 2001 Jun;2(2):183-201. doi: 10.1093/biostatistics/2.2.183.
10
Cluster analysis and display of genome-wide expression patterns.全基因组表达模式的聚类分析与展示
Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8. doi: 10.1073/pnas.95.25.14863.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验