Suppr超能文献

Conformational restraint is a critical determinant of unnatural nucleotide recognition by protein kinases.

作者信息

Ulrich Scott M, Sallee Nathan A, Shokat Kevan M

机构信息

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-0450, USA.

出版信息

Bioorg Med Chem Lett. 2002 Nov 4;12(21):3223-7. doi: 10.1016/s0960-894x(02)00616-9.

Abstract

This report describes the synthesis of N(4)-(benzyl) AICAR triphosphate, a conformationally restrained analogue of N(4)-(benzyl) ribavirin triphosphate. Both of these nucleotides were evaluated as phosphodonors for wild-type p38MAP kinase and T106G p38MAP kinase, a designed mutant with expanded nucleotide specificity. The conformationally restrained nucleotide, N(4)-(benzyl) AICAR triphosphate, is orthogonal to (not accepted as a substrate by) wild-type p38MAP kinase, in contrast to N(4)-(benzyl) ribavirin triphosphate. Furthermore, N(4)-(benzyl) AICAR triphosphate, is accepted as a substrate by T106G p38MAP kinase, in contrast to N(4)-(benzyl) ribavirin triphosphate. We hypothesize that the presence of an internal hydrogen bond in N(4)-(benzyl) AICAR and its absence in N(4)-(benzyl) ribavirin triphosphate is the main determinant for their differing structure-activity relationships.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验