Löhn Matthias, Kämpf Dietmar, Gui-Xuan Chai, Haller Hermann, Luft Friedrich C, Gollasch Maik
Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Charité University Hospital, Humboldt University of Berlin, 13125 Berlin, Germany.
Am J Physiol Cell Physiol. 2002 Nov;283(5):C1383-9. doi: 10.1152/ajpcell.01369.2000.
The initiation of contractile force in arterial smooth muscle (SM) is believed to be regulated by the intracellular Ca2+ concentration and SM myosin type II phosphorylation. We tested the hypothesis that SM myosin type II operates as a molecular motor protein in electromechanical, but not in protein kinase C (PKC)-induced, contraction of small resistance-sized cerebral arteries. We utilized a SM type II myosin heavy chain (MHC) knockout mouse model and measured arterial wall Ca2+ concentration (Ca2+) and the diameter of pressurized cerebral arteries (30-100 microm) by means of digital fluorescence video imaging. Intravasal pressure elevation caused a graded Ca2+ increase and constricted cerebral arteries of neonatal wild-type mice by 20-30%. In contrast, intravasal pressure elevation caused a graded increase of Ca2+ without constriction in (-/-) MHC-deficient arteries. KCl (60 mM) induced a further Ca2+ increase but failed to induce vasoconstriction of (-/-) MHC-deficient cerebral arteries. Activation of PKC by phorbol ester (phorbol 12-myristate 13-acetate, 100 nM) induced a strong, sustained constriction of (-/-) MHC-deficient cerebral arteries without changing Ca2+. These results demonstrate a major role for SM type II myosin in the development of myogenic tone and Ca2+ -dependent constriction of resistance-sized cerebral arteries. In contrast, the sustained contractile response did not depend on myosin and intracellular Ca2+ but instead depended on PKC. We suggest that SM myosin type II operates as a molecular motor protein in the development of myogenic tone but not in pharmacomechanical coupling by PKC in cerebral arteries. Thus PKC-dependent phosphorylation of cytoskeletal proteins may be responsible for sustained contraction in vascular SM.
动脉平滑肌(SM)收缩力的起始被认为受细胞内钙离子浓度和SM肌球蛋白II型磷酸化的调节。我们检验了这样一个假设:在小阻力型脑动脉的机电性收缩中,而非蛋白激酶C(PKC)诱导的收缩中,SM肌球蛋白II型作为一种分子运动蛋白发挥作用。我们利用了一种SM II型肌球蛋白重链(MHC)基因敲除小鼠模型,并通过数字荧光视频成像测量动脉壁钙离子浓度(Ca2+)和加压脑动脉(30 - 100微米)的直径。血管内压力升高导致新生野生型小鼠脑动脉的Ca2+呈分级增加,并使其收缩20 - 30%。相比之下,血管内压力升高导致(-/-)MHC缺陷型动脉的Ca2+呈分级增加,但没有收缩。60 mM的氯化钾诱导Ca2+进一步增加,但未能诱导(-/-)MHC缺陷型脑动脉的血管收缩。佛波酯(佛波醇12 - 肉豆蔻酸酯13 - 乙酸酯,100 nM)激活PKC诱导(-/-)MHC缺陷型脑动脉强烈、持续收缩,而Ca2+没有变化。这些结果表明,SM II型肌球蛋白在阻力型脑动脉的肌源性张力发展和钙离子依赖性收缩中起主要作用。相比之下,持续的收缩反应不依赖于肌球蛋白和细胞内钙离子,而是依赖于PKC。我们认为,SM肌球蛋白II型在肌源性张力发展中作为分子运动蛋白发挥作用,但在脑动脉中PKC介导的药物机械偶联中并非如此。因此,细胞骨架蛋白的PKC依赖性磷酸化可能是血管SM持续收缩的原因。