Suppr超能文献

脑酪氨酸的亚分子探索:我们现在在寻找什么?

Submolecular adventures of brain tyrosine: what are we searching for now?

作者信息

Kochman A, Kośka Cz, Metodiewa D

机构信息

Department of Pathological Anatomy, Medical University of Wrocław, Wrocław, Poland.

出版信息

Amino Acids. 2002;23(1-3):95-101. doi: 10.1007/s00726-001-0114-6.

Abstract

This overview summarizes recent findings on the role of tyrosyl radical (TyrO()) in the multitudinous neurochemical systems of brain, and theorizes on the putative role of TyrO() in neurological disorders [Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS)]. TyrO() and tyrosine per se can interact with reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radical mechanisms and chain propagating reactions. The concentration of TyrO(), ROS and RNS can increase dramatically under conditions of generalized stress: oxidative, nitrative or reductive as well, and this can induce damage directly (by lipid peroxidation) or indirectly (by proteins oxidation and/or nitration), potentially causing apoptotic neuronal cell death or autoschizis. Evidence of lesion-induced neuronal oxidative stress includes the presence of protein peroxides (TyrOOH), DT (o,o'-dityrosine) and 3-NT (3-nitrotyrosine). Mechanistic details of protein- and enzymatic oxidation/nitration in vivo remain unresolved, although recent in vitro data strongly implicate free radical pathways via TyrO(). Nitration/denitration processes can be pathological, but they also may play: 1). a signal transduction role, because nitration of tyrosine residues through TyrO() formation can modulate, as well the phosphorylation (tyrosine kinases activity) and/or tyrosine hydroxylation (tyrosine hydroxylase inactivation), leading to consequent dopamine synthesis failure and increased degradation of target proteins, respectively; 2). a role of "blocker" for radical-radical reactions (scavenging of NO(), NO()(2) and CO(3)(-) by TyrO()); 3). a role of limiting factors for peroxynitrite formation, by lowering O(2)(-) formation, which is strongly linked to the pathogenesis of neural diseases. It is still not known if tyrosine oxidation/nitration via TyrO() formation is 1). a footprint of generalized stress and neuronal disorders, or 2). an important part of O(2)(-) and NO() metabolism, or 3). merely a part of integral processes for maintaining of neuronal homeostasis. The full answer to these questions should be of top research priority, as the problem of increased free radical formation in brain and/or imbalance of the ratios ROS/RNS/TyrO(*) may be all important in defining whether oxidative stress is the critical determinant of tissue and neural cell injury that leads to pathological end-points.

摘要

本综述总结了近期关于酪氨酰自由基(TyrO())在大脑众多神经化学系统中的作用的研究结果,并对TyrO()在神经疾病[帕金森病(PD)、阿尔茨海默病(AD)和肌萎缩侧索硬化症(ALS)]中的假定作用进行了理论探讨。TyrO()和酪氨酸本身可通过自由基机制和链式传播反应与活性氧(ROS)和活性氮(RNS)相互作用。在全身性应激条件下,无论是氧化应激、硝化应激还是还原应激,TyrO()、ROS和RNS的浓度都可能急剧增加,这可直接(通过脂质过氧化)或间接(通过蛋白质氧化和/或硝化)诱导损伤,潜在地导致神经元细胞凋亡或自裂。损伤诱导的神经元氧化应激的证据包括蛋白质过氧化物(TyrOOH)、DT(邻,邻'-二酪氨酸)和3-NT(3-硝基酪氨酸)的存在。尽管最近的体外数据强烈暗示通过TyrO()的自由基途径,但体内蛋白质和酶氧化/硝化的机制细节仍未解决。硝化/脱硝化过程可能是病理性的,但它们也可能发挥以下作用:1).信号转导作用,因为通过形成TyrO()使酪氨酸残基硝化,既可以调节磷酸化(酪氨酸激酶活性)和/或酪氨酸羟化(酪氨酸羟化酶失活),分别导致随后的多巴胺合成失败和靶蛋白降解增加;2).“阻滞剂”作用,用于自由基-自由基反应(TyrO()清除NO()、NO()(2)和CO(3)(-));3).通过降低与神经疾病发病机制密切相关的O(2)(-)形成,作为过氧亚硝酸盐形成的限制因素。目前尚不清楚通过形成TyrO()进行的酪氨酸氧化/硝化是1).全身性应激和神经元疾病的标志,还是2).O(2)(-)和NO()代谢的重要组成部分,或者3).仅仅是维持神经元稳态的整体过程的一部分。这些问题的完整答案应是首要研究重点,因为大脑中自由基形成增加和/或ROS/RNS/TyrO(*)比例失衡的问题,对于确定氧化应激是否是导致病理终点的组织和神经细胞损伤的关键决定因素可能至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验