Suppr超能文献

采用超临界流体萃取和气相色谱/质谱联用技术测定非脂肪食品中的农药残留:协同研究

Determination of pesticide residues in nonfatty foods by supercritical fluid extraction and gas chromatography/mass spectrometry: collaborative study.

作者信息

Lehotay Steven J

机构信息

U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA 19038, USA.

出版信息

J AOAC Int. 2002 Sep-Oct;85(5):1148-66.

Abstract

A collaborative study was conducted to determine multiple pesticide residues in apple, green bean, and carrot by using supercritical fluid extraction (SFE) and gas chromatography/mass spectrometry (GC/MS). Seventeen laboratories from 7 countries participated in the final study, and a variety of different instruments was used by collaborators. The procedure simply entails 3 steps: (1) mix 1.1 g drying agent (Hydromatrix) per 1 g frozen precomminuted sample, and load 4-5.5 g of this mixture into a 7-10 mL extraction vessel; (2) perform SFE for 20-30 min with a 1-2 mL/min flow rate of carbon dioxide at 0.85 g/mL density (320 atm, 60 degrees C); and (3) inject the extract, which was collected on a solid-phase or in a liquid trap, into the gas chromatograph/mass spectrometer, using either an ion-trap instrument in full-scan mode or a quadrupole-type instrument in selected-ion monitoring mode. The ability of GC/MS to simultaneously quantitate and confirm the identity of the semivolatile analytes at trace concentrations is a strong feature of the approach. The selectivity of SFE and GC/MS avoids the need for post-extraction cleanup steps, and the conversion of the CO2 solvent to a gas after SFE eliminates the solvent evaporation step common in traditional methods. The approach has several advantages, but its main drawback is the lower recoveries for the most polar analytes, such as methamidophos and acephate, and the most nonpolar analytes, such as pyrethroids. Recoveries for most pesticides are >75%, and recoveries of nonpolar analytes are still >50%. The (within-laboratory) repeatability relative standard deviation (RSDr) values of the recoveries are generally <15%. More specifically, the average results from the 9-14 laboratories in the final analysis of 6 blind duplicates at 3 concentrations for each pesticide are as follows: carbofuran in apple (75-500 ng/g), 89% recovery, 7% RSDr, 9% reproducibility relative standard deviation (RSDR); diazinon in apple (60-400 ng/g), 83% recovery, 13% RSDr, 17% RSDR; vinclozolin in apple (6-400 ng/g), 97% recovery, 13% RSDr, 18% RSDR; chlorpyrifos in apple (50-300 ng/g), 105% recovery, 11% RSDr, 13% RSDR; endosulfan sulfate in apple (150-1000 ng/g), 95% recovery, 15% RSDr, 17% RSDR; trifluralin in green bean (30-200 ng/g), 58% recovery, 11% RSDr, 27% RSDR; dacthal in green bean (60-400 ng/g), 88% recovery, 11% RSDr, 17% RSDR; quintozene in green bean (60-400 ng/g), 79% recovery, 13% RSDr, 18% RSDR; chlorpyrifos in green bean (50-300 ng/g), 84% recovery, 11% RSDr, 17% RSDR; p,p'-DDE in green bean (45-300 ng/g), 64% recovery, 14% RSDr, 27% RSDR; atrazine in carrot (75-500 ng/g), 90% recovery, 11% RSDr, 15% RSDR; metalaxyl in carrot (75-500 ng/g), 89% recovery, 8% RSDr, 12% RSDR; parathion-methyl in carrot (75-500 ng/g), 84% recovery, 14% RSDr, 15% RSDR; chlorpyrifos in carrot (50-300 ng/g), 77% recovery, 13% RSDr, 19% RSDR; and bifenthrin in carrot (90-600 ng/g), 63% recovery, 12% RSDr, and 25% RSDR. All analytes except for the nonpolar compounds trifluralin, p,p'-DDE, and bifenthrin gave average Horwitz ratios of <1.0 when AOAC criteria were used. These 3 analytes had high RSDr values but lower RSDR values, which indicated that certain SFE instruments gave consistently lower recoveries for nonpolar compounds. The collaborative study results demonstrate that the method meets the purpose of many monitoring programs for pesticide residue analysis, and the Study Director recommends that it be adopted Official First Action.

摘要

开展了一项合作研究,以采用超临界流体萃取(SFE)和气相色谱/质谱联用(GC/MS)法测定苹果、绿豆和胡萝卜中的多种农药残留。来自7个国家的17个实验室参与了最终研究,合作者使用了各种不同的仪器。该方法只需3个步骤:(1)每1 g冷冻预粉碎样品混合1.1 g干燥剂(Hydromatrix),并将4 - 5.5 g此混合物装入7 - 10 mL萃取容器中;(2)以0.85 g/mL密度(320 atm,60℃)的二氧化碳1 - 2 mL/min的流速进行20 - 30 min的SFE;(3)将收集在固相或液体捕集阱中的萃取物注入气相色谱仪/质谱仪中,可使用全扫描模式的离子阱仪器或选择离子监测模式的四极杆型仪器。GC/MS能够同时对痕量浓度的半挥发性分析物进行定量和确认其身份,这是该方法的一个显著特点。SFE和GC/MS的选择性避免了萃取后净化步骤的需要,并且SFE后CO2溶剂转化为气体消除了传统方法中常见的溶剂蒸发步骤。该方法有几个优点,但其主要缺点是对于极性最强的分析物(如甲胺磷和乙酰甲胺磷)以及非极性最强的分析物(如拟除虫菊酯)回收率较低。大多数农药的回收率>75%,非极性分析物的回收率仍>50%。回收率的(实验室内)重复性相对标准偏差(RSDr)值通常<15%。更具体地说,在对每种农药的3个浓度水平进行6次盲样重复分析的最终分析中,9 - 14个实验室的平均结果如下:苹果中克百威(75 - 500 ng/g),回收率89%,RSDr 7%,再现性相对标准偏差(RSDR)9%;苹果中二嗪农(60 - 400 ng/g),回收率83%,RSDr 13%,RSDR 17%;苹果中乙烯菌核利(� - 400 ng/g),回收率97%,RSDr 13%,RSDR 18%;苹果中毒死蜱(50 - 300 ng/g),回收率105%,RSDr 11%,RSDR 13%;苹果中硫丹硫酸酯(150 - 1000 ng/g),回收率95%,RSDr 15%,RSDR 17%;绿豆中氟乐灵(30 - 200 ng/g),回收率58%,RSDr 11%,RSDR 27%;绿豆中敌草索(60 - 400 ng/g),回收率88%,RSDr 11%,RSDR 17%;绿豆中五氯硝基苯(60 - 400 ng/g)),回收率79%,RSDr 13%,RSDR 18%;绿豆中毒死蜱(50 - 300 ng/g),回收率84%,RSDr 11%,RSDR 17%;绿豆中p,p'-滴滴伊(45 - 300 ng/g),回收率64%,RSDr 14%,RSDR 27%;胡萝卜中莠去津(75 - 500 ng/g),回收率90%,RSDr 11%,RSDR 15%;胡萝卜中精甲霜灵(75 - 500 ng/g),回收率89%,RSDr 8%,RSDR 12%;胡萝卜中甲拌磷(75 - 500 ng/g),回收率84%,RSDr 14%,RSDR 15%;胡萝卜中毒死蜱(50 - 300 ng/g),回收率77%,RSDr 13%,RSDR 19%;胡萝卜中联苯菊酯(90 - 600 ng/g),回收率63%,RSDr 12%,RSDR 25%。当采用AOAC标准时,除了非极性化合物氟乐灵、p,p'-滴滴伊和联苯菊酯外,所有分析物的平均霍维茨比值均<1.0。这3种分析物的RSDr值较高但RSDR值较低,这表明某些SFE仪器对非极性化合物的回收率始终较低。合作研究结果表明,该方法满足许多农药残留分析监测计划的目的,研究主任建议将其作为官方首次行动采用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验