Suppr超能文献

Impaired glucose homeostasis in insulin-like growth factor-binding protein-3-transgenic mice.

作者信息

Silha Josef V, Gui Yaoting, Murphy Liam J

机构信息

Department of Physiology, University of Manitoba, Winnipeg R3E 0W3, Canada.

出版信息

Am J Physiol Endocrinol Metab. 2002 Nov;283(5):E937-45. doi: 10.1152/ajpendo.00014.2002.

Abstract

Glucose homeostasis was examined in male transgenic (Tg) mice that overexpressed the human insulin-like growth factor (IGF)-binding protein (IGFBP)-3 cDNA, driven by either the cytomegalovirus (CMV) or the phosphoglycerate kinase (PGK) promoter. The Tg mice of both lineages demonstrated increased serum levels of human (h) IGFBP-3 and total IGF-I compared with wild-type (Wt) mice. Fasting blood glucose levels were significantly elevated in 8-wk-old CMV-binding protein (CMVBP)-3- and PGK binding protein (PGKBP)-3-Tg mice compared with Wt mice: 6.35 +/- 0.22 and 5.22 +/- 0.39 vs. 3.99 +/- 0.26 mmol/l, respectively. Plasma insulin was significantly elevated only in CMVBP-3-Tg mice. The responses to a glucose challenge were significantly increased in both Tg strains: area under the glucose curve = 1,824 +/- 65 and 1,910 +/- 115 vs. 1,590 +/- 67 mmol. l(-1). min for CMVBP-3, PGKBP-3, and Wt mice, respectively. The hypoglycemic effects of insulin and IGF-I were significantly attenuated in Tg mice compared with Wt mice. There were no differences in adipose tissue resistin, retinoid X receptor-alpha, or peroxisome proliferator-activated receptor-gamma mRNA levels between Tg and Wt mice. Uptake of 2-deoxyglucose was reduced in muscle and adipose tissue from Tg mice compared with Wt mice. These data demonstrate that overexpression of hIGFBP-3 results in fasting hyperglycemia, impaired glucose tolerance, and insulin resistance.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验