Blanchetot Christophe, Tertoolen Leon G, Overvoorde John, den Hertog Jeroen
Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands.
J Biol Chem. 2002 Dec 6;277(49):47263-9. doi: 10.1074/jbc.M205810200. Epub 2002 Oct 9.
The presence of two protein-tyrosine phosphatase (PTP) domains is a striking feature in most transmembrane receptor PTPs (RPTPs). The generally inactive membrane-distal PTP domains (RPTP-D2s) bind and are proposed to regulate the membrane-proximal PTP domains (RPTP-D1s). We set out to characterize the interactions between RPTP-D1s and RPTP-D2s in vivo by co-immunoprecipitation of hemagglutinin-tagged fusion proteins encoding the transmembrane domain and RPTP-D1 and myc-tagged RPTP-D2. Seven RPTPs from four different subfamilies were used: RPTPalpha, RPTPepsilon, LAR, RPTPvarsigma, RPTPdelta, CD45, and RPTP(mu). We found that RPTP-D2s bound to RPTPs with different affinities. The presence of intrinsic RPTP-D2 altered the binding specificity toward other RPTP-D2s positively or negatively, depending on the identity of the RPTPs. Furthermore, the C terminus of RPTP-D2s and the "wedge" in RPTP-D1s played a central role in binding specificity. Finally, full-length RPTPalpha and LAR heterodimerized in an oxidative stress-dependent manner. Like RPTPalpha-D2, the LAR-D2 conformation was affected by oxidative stress, suggesting a common regulatory mechanism for RPTP complex formation. Taken together, interactions between RPTP-D1s and RPTP-D2s are a common but specific mechanism that is likely to be regulated. The RPTP-D2s and the wedge structures are crucial determinants of binding specificity, thus regulating cross-talk between RPTPs.
两个蛋白酪氨酸磷酸酶(PTP)结构域的存在是大多数跨膜受体蛋白酪氨酸磷酸酶(RPTPs)的一个显著特征。通常无活性的膜远端PTP结构域(RPTP-D2s)结合并被认为可调节膜近端PTP结构域(RPTP-D1s)。我们通过对编码跨膜结构域和RPTP-D1的血凝素标签融合蛋白与myc标签的RPTP-D2进行共免疫沉淀,来在体内表征RPTP-D1s与RPTP-D2s之间的相互作用。使用了来自四个不同亚家族的七个RPTPs:RPTPα、RPTPε、LAR、RPTPς、RPTPδ、CD45和RPTPμ。我们发现RPTP-D2s以不同亲和力与RPTPs结合。内在RPTP-D2的存在根据RPTPs的身份正向或负向改变了对其他RPTP-D2s的结合特异性。此外,RPTP-D2s的C末端和RPTP-D1s中的“楔形”在结合特异性中起核心作用。最后,全长RPTPα和LAR以氧化应激依赖性方式形成异二聚体。与RPTPα-D2一样,LAR-D2的构象受氧化应激影响,这表明RPTP复合物形成存在共同的调节机制。综上所述,RPTP-D1s与RPTP-D2s之间的相互作用是一种常见但特定的机制,可能受到调节。RPTP-D2s和楔形结构是结合特异性的关键决定因素,从而调节RPTPs之间的相互作用。