Suppr超能文献

相似文献

1
Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases.
Chem Rev. 2018 Feb 14;118(3):1069-1091. doi: 10.1021/acs.chemrev.7b00105. Epub 2017 May 25.
3
Protein Tyrosine Phosphatase regulation by Reactive Oxygen Species.
Adv Cancer Res. 2024;162:45-74. doi: 10.1016/bs.acr.2024.05.002. Epub 2024 May 24.
4
Targeting Tyrosine Phosphatases: Time to End the Stigma.
Trends Pharmacol Sci. 2017 Jun;38(6):524-540. doi: 10.1016/j.tips.2017.03.004. Epub 2017 Apr 12.
5
Regulation of protein tyrosine phosphatases by reversible oxidation.
J Biochem. 2011 Oct;150(4):345-56. doi: 10.1093/jb/mvr104. Epub 2011 Aug 19.
6
Toxicological disruption of signaling homeostasis: tyrosine phosphatases as targets.
Annu Rev Pharmacol Toxicol. 2010;50:215-35. doi: 10.1146/annurev.pharmtox.010909.105841.
7
Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.
Acc Chem Res. 2017 Jan 17;50(1):122-129. doi: 10.1021/acs.accounts.6b00537. Epub 2016 Dec 15.
8
Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B.
J Biol Chem. 2004 Sep 3;279(36):37716-25. doi: 10.1074/jbc.M404606200. Epub 2004 Jun 10.
9
Redox-based probes as tools to monitor oxidized protein tyrosine phosphatases in living cells.
Eur J Med Chem. 2014 Dec 17;88:28-33. doi: 10.1016/j.ejmech.2014.06.040. Epub 2014 Jun 19.
10
Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery.
Med Res Rev. 2022 May;42(3):1064-1110. doi: 10.1002/med.21871. Epub 2021 Nov 17.

引用本文的文献

2
Exploring UBASH3A: from immune regulation to autoimmune diseases.
J Transl Med. 2025 Jul 24;23(1):822. doi: 10.1186/s12967-025-06760-4.
3
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
4
5
Covalent-Allosteric Inhibitors: Do We Get the Best of Both Worlds?
J Med Chem. 2025 Feb 27;68(4):4040-4052. doi: 10.1021/acs.jmedchem.4c02760. Epub 2025 Feb 12.
8
Reactive oxygen species and oxidative stress in acute pancreatitis: Pathogenesis and new therapeutic interventions.
World J Gastroenterol. 2024 Dec 7;30(45):4771-4780. doi: 10.3748/wjg.v30.i45.4771.
9
Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application.
Top Curr Chem (Cham). 2024 Nov 28;383(1):1. doi: 10.1007/s41061-024-00483-8.
10
PTPN14 aggravates neointimal hyperplasia via boosting PDGFRβ signaling in smooth muscle cells.
Nat Commun. 2024 Aug 27;15(1):7398. doi: 10.1038/s41467-024-51881-x.

本文引用的文献

1
Drugging the Undruggable: Therapeutic Potential of Targeting Protein Tyrosine Phosphatases.
Acc Chem Res. 2017 Jan 17;50(1):122-129. doi: 10.1021/acs.accounts.6b00537. Epub 2016 Dec 15.
2
PRL3-zumab, a first-in-class humanized antibody for cancer therapy.
JCI Insight. 2016 Jun 16;1(9):e87607. doi: 10.1172/jci.insight.87607.
3
Role of phosphatase of regenerating liver 1 (PRL1) in spermatogenesis.
Sci Rep. 2016 Sep 26;6:34211. doi: 10.1038/srep34211.
4
SHP2 phosphatase as a novel therapeutic target for melanoma treatment.
Oncotarget. 2016 Nov 8;7(45):73817-73829. doi: 10.18632/oncotarget.12074.
5
Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases.
Nature. 2016 Jul 7;535(7610):148-52. doi: 10.1038/nature18621. Epub 2016 Jun 29.
6
Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor.
J Med Chem. 2016 Sep 8;59(17):7773-82. doi: 10.1021/acs.jmedchem.6b00680. Epub 2016 Jul 12.
7
Novel Anticancer Agents Based on Targeting the Trimer Interface of the PRL Phosphatase.
Cancer Res. 2016 Aug 15;76(16):4805-15. doi: 10.1158/0008-5472.CAN-15-2323. Epub 2016 Jun 20.
9
Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.
Cell. 2016 Jan 14;164(1-2):29-44. doi: 10.1016/j.cell.2015.12.035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验