Suppr超能文献

尿路致病性大肠杆菌菌株536的四个致病岛(PAI I(536)至PAI IV(536))的遗传结构与分布

Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536.

作者信息

Dobrindt Ulrich, Blum-Oehler Gabriele, Nagy Gabor, Schneider György, Johann André, Gottschalk Gerhard, Hacker Jörg

机构信息

Institut für Molekulare Infektionsbiologie, Universität Würzburg, D-97070 Würzburg, Germany.

出版信息

Infect Immun. 2002 Nov;70(11):6365-72. doi: 10.1128/IAI.70.11.6365-6372.2002.

Abstract

For the uropathogenic Escherichia coli strain 536 (O6:K15:H31), the DNA sequences of three pathogenicity islands (PAIs) (PAI I(536) to PAI III(536)) and their flanking regions (about 270 kb) were determined to further characterize the virulence potential of this strain. PAI I(536) to PAI III(536) exhibit features typical of PAIs, such as (i) association with tRNA-encoding genes; (ii) G+C content differing from that of the host genome; (iii) flanking repeat structures; (iv) a mosaic-like structure comprising a multitude of functional, truncated, and nonfunctional putative open reading frames (ORFs) with known or unknown functions; and (v) the presence of many fragments of mobile genetic elements. PAI I(536) to PAI III(536) range between 68 and 102 kb in size. Although these islands contain several ORFs and known virulence determinants described for PAIs of other extraintestinal pathogenic E. coli (ExPEC) isolates, they also consist of as-yet-unidentified ORFs encoding putative virulence factors. The genetic structure of PAI IV(536), which represents the core element of the so-called high-pathogenicity island encoding a siderophore system initially identified in pathogenic yersiniae, was further characterized by sample sequencing. For the first time, multiple PAI sequences (PAI I(536) to PAI IV(536)) in uropathogenic E. coli were studied and their presence in several wild-type E. coli isolates was extensively investigated. The results obtained suggest that these PAIs or at least large fragments thereof are detectable in other pathogenic E. coli isolates. These results support our view that the acquisition of large DNA regions, such as PAIs, by horizontal gene transfer is an important factor for the evolution of bacterial pathogens.

摘要

对于尿路致病性大肠杆菌菌株536(O6:K15:H31),测定了三个致病岛(PAIs)(PAI I(536)至PAI III(536))及其侧翼区域(约270 kb)的DNA序列,以进一步表征该菌株的毒力潜力。PAI I(536)至PAI III(536)表现出PAIs的典型特征,例如:(i)与编码tRNA的基因相关;(ii)G+C含量与宿主基因组不同;(iii)侧翼重复结构;(iv)由众多具有已知或未知功能的功能性、截短的和无功能的推定开放阅读框(ORFs)组成的镶嵌样结构;以及(v)存在许多移动遗传元件片段。PAI I(536)至PAI III(536)的大小在68至102 kb之间。尽管这些岛包含几个ORFs和其他肠道外致病性大肠杆菌(ExPEC)分离株的PAIs中描述的已知毒力决定因素,但它们也由编码推定毒力因子的尚未鉴定的ORFs组成。通过样本测序进一步表征了PAI IV(536)的遗传结构,PAI IV(536)代表了所谓高致病性岛的核心元件,该岛编码最初在致病性耶尔森氏菌中鉴定的铁载体系统。首次研究了尿路致病性大肠杆菌中的多个PAI序列(PAI I(来自536)至PAI IV(536)),并广泛调查了它们在几种野生型大肠杆菌分离株中的存在情况。获得的结果表明,这些PAIs或其至少大片段在其他致病性大肠杆菌分离株中是可检测到的。这些结果支持了我们的观点,即通过水平基因转移获得大的DNA区域,如PAIs,是细菌病原体进化的一个重要因素。

相似文献

6
Dichotomy in the evolution of pathogenicity island and bacteriophage encoded integrases from pathogenic Escherichia coli strains.
Infect Genet Evol. 2011 Mar;11(2):423-36. doi: 10.1016/j.meegid.2010.12.003. Epub 2010 Dec 13.
7
Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmid cloning and sample sequencing.
Infect Immun. 1996 Sep;64(9):3736-43. doi: 10.1128/iai.64.9.3736-3743.1996.
8
tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli.
Mol Microbiol. 1995 Jul;17(1):109-21. doi: 10.1111/j.1365-2958.1995.mmi_17010109.x.
9
Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates.
Clin Microbiol Infect. 2006 Sep;12(9):880-6. doi: 10.1111/j.1469-0691.2006.01461.x.

引用本文的文献

1
The diverse virulence potential of atypical enteropathogenic isolated from diarrhea: the emergence of a hybrid pathotype?
Front Microbiol. 2025 Jun 6;16:1599350. doi: 10.3389/fmicb.2025.1599350. eCollection 2025.
2
Developing the PIP-eco: An integrated genomic pipeline for identification and characterization of pathotypes encompassing hybrid forms.
Comput Struct Biotechnol J. 2024 Jul 20;23:3040-3049. doi: 10.1016/j.csbj.2024.07.017. eCollection 2024 Dec.
5
possessing the dihydroxyacetone phosphate shunt utilize 5'-deoxynucleosides for growth.
Microbiol Spectr. 2024 Apr 2;12(4):e0308623. doi: 10.1128/spectrum.03086-23. Epub 2024 Mar 5.
7
Genome-wide association reveals host-specific genomic traits in Escherichia coli.
BMC Biol. 2023 Apr 11;21(1):76. doi: 10.1186/s12915-023-01562-w.
9
Characterization of Uropathogenic Reveals Hybrid Isolates of Uropathogenic and Diarrheagenic (UPEC/DEC) .
Microorganisms. 2022 Mar 17;10(3):645. doi: 10.3390/microorganisms10030645.
10
Bacterial Morphotypes as Important Trait for Uropathogenic Diagnostic; a Virulence-Phenotype-Phylogeny Study.
Microorganisms. 2021 Nov 18;9(11):2381. doi: 10.3390/microorganisms9112381.

本文引用的文献

1
Genome plasticity in pathogenic and nonpathogenic enterobacteria.
Curr Top Microbiol Immunol. 2002;264(1):157-75.
3
Whole genome plasticity in pathogenic bacteria.
Curr Opin Microbiol. 2001 Oct;4(5):550-7. doi: 10.1016/s1369-5274(00)00250-2.
7
Inhibition of Shigella flexneri-induced transepithelial migration of polymorphonuclear leucocytes by cadaverine.
Cell Microbiol. 1999 Sep;1(2):143-55. doi: 10.1046/j.1462-5822.1999.00014.x.
9
Artemis: sequence visualization and annotation.
Bioinformatics. 2000 Oct;16(10):944-5. doi: 10.1093/bioinformatics/16.10.944.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验