Suppr超能文献

Ventral medulla pHi measured in vivo by 31P NMR is not regulated during hypercapnia in anesthetized rat.

作者信息

Nattie Eugene, Li Aihua, Meyerand Elizabeth, Dunn Jeff F

机构信息

Department of Physiology, Dartmouth Medical School, 706E Borwell Building, Lebanon, NH 03756-0001, USA.

出版信息

Respir Physiol Neurobiol. 2002 Apr;130(2):139-49. doi: 10.1016/s0034-5687(01)00344-9.

Abstract

Chemoreceptors in the ventral medulla contribute to the respiratory response to hypercapnia. Do they 'sense' intracellular pH (pHi)? We measured pHi in the ventral medulla or cortex (control) using 31P-NMR obtained via a novel 3 x 5 mm2 surface coil in anesthetized rats breathing air or 7% CO2. During air breathing over 240 min, pHi decreased slightly from 7.13 +/- 0.02 to 7.05 +/- 0.02 (SEM; n = 5; 2 cortex, 3 ventral medulla). During 180 min of hypercapnia, cortical pHi (n = 4) decreased from 7.17 +/- 0.02 to 6.87 +/- 0.01 by 90 min and recovered by 150 min. Ventral medulla pHi showed no such regulation. It decreased from 7.11 +/- 0.02 to 6.88 +/- 0.02 at 90 min and recovered only after cessation of hypercapnia (n = 5), results consistent with pHi being the chemoreceptor stimulus. However, non-chemoreceptor neurons that contribute to our medullary NMR signal also do not appear to regulate pHi in vitro. Regional differences in pHi regulation between cortex and ventral medulla may be due to both chemosensitive and non-chemosensitive neurons.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验