Suppr超能文献

Ventral medulla pHi measured in vivo by 31P NMR is not regulated during hypercapnia in anesthetized rat.

作者信息

Nattie Eugene, Li Aihua, Meyerand Elizabeth, Dunn Jeff F

机构信息

Department of Physiology, Dartmouth Medical School, 706E Borwell Building, Lebanon, NH 03756-0001, USA.

出版信息

Respir Physiol Neurobiol. 2002 Apr;130(2):139-49. doi: 10.1016/s0034-5687(01)00344-9.

Abstract

Chemoreceptors in the ventral medulla contribute to the respiratory response to hypercapnia. Do they 'sense' intracellular pH (pHi)? We measured pHi in the ventral medulla or cortex (control) using 31P-NMR obtained via a novel 3 x 5 mm2 surface coil in anesthetized rats breathing air or 7% CO2. During air breathing over 240 min, pHi decreased slightly from 7.13 +/- 0.02 to 7.05 +/- 0.02 (SEM; n = 5; 2 cortex, 3 ventral medulla). During 180 min of hypercapnia, cortical pHi (n = 4) decreased from 7.17 +/- 0.02 to 6.87 +/- 0.01 by 90 min and recovered by 150 min. Ventral medulla pHi showed no such regulation. It decreased from 7.11 +/- 0.02 to 6.88 +/- 0.02 at 90 min and recovered only after cessation of hypercapnia (n = 5), results consistent with pHi being the chemoreceptor stimulus. However, non-chemoreceptor neurons that contribute to our medullary NMR signal also do not appear to regulate pHi in vitro. Regional differences in pHi regulation between cortex and ventral medulla may be due to both chemosensitive and non-chemosensitive neurons.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验