Bogin Oren, Levin Inna, Hacham Yael, Tel-Or Shoshana, Peretz Moshe, Frolow Felix, Burstein Yigal
Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
Protein Sci. 2002 Nov;11(11):2561-74. doi: 10.1110/ps.0222102.
Previous research in our laboratory comparing the three-dimensional structural elements of two highly homologous alcohol dehydrogenases, one from the mesophile Clostridium beijerinckii (CbADH) and the other from the extreme thermophile Thermoanaerobacter brockii (TbADH), suggested that in the thermophilic enzyme, an extra intrasubunit ion pair (Glu224-Lys254) and a short ion-pair network (Lys257-Asp237-Arg304-Glu165) at the intersubunit interface might contribute to the extreme thermal stability of TbADH. In the present study, we used site-directed mutagenesis to replace these structurally strategic residues in CbADH with the corresponding amino acids from TbADH, and we determined the effect of such replacements on the thermal stability of CbADH. Mutations in the intrasubunit ion pair region increased thermostability in the single mutant S254K- and in the double mutant V224E/S254K-CbADH, but not in the single mutant V224E-CbADH. Both single amino acid replacements, M304R- and Q165E-CbADH, in the region of the intersubunit ion pair network augmented thermal stability, with an additive effect in the double mutant M304R/Q165E-CbADH. To investigate the precise mechanism by which such mutations alter the molecular structure of CbADH to achieve enhanced thermostability, we constructed a quadruple mutant V224E/S254K/Q165E/M304R-CbADH and solved its three-dimensional structure. The overall results indicate that the amino acid substitutions in CbADH mutants with enhanced thermal stability reinforce the quaternary structure of the enzyme by formation of an extended network of intersubunit ion pairs and salt bridges, mediated by water molecules, and by forming a new intrasubunit salt bridge.
我们实验室之前的研究比较了两种高度同源的乙醇脱氢酶的三维结构元件,一种来自嗜温菌拜氏梭菌(CbADH),另一种来自嗜热厌氧菌布氏嗜热栖热菌(TbADH),结果表明,在嗜热酶中,亚基内额外的离子对(Glu224-Lys254)和亚基间界面处的短离子对网络(Lys257-Asp237-Arg304-Glu165)可能有助于TbADH的极端热稳定性。在本研究中,我们使用定点诱变将CbADH中这些具有结构战略意义的残基替换为TbADH中的相应氨基酸,并确定了这种替换对CbADH热稳定性的影响。亚基内离子对区域的突变在单突变体S254K-和双突变体V224E/S254K-CbADH中提高了热稳定性,但在单突变体V224E-CbADH中没有提高。亚基间离子对网络区域的两个单氨基酸替换,M304R-和Q165E-CbADH,都增强了热稳定性,在双突变体M304R/Q165E-CbADH中具有累加效应。为了研究这些突变改变CbADH分子结构以实现增强热稳定性的精确机制,我们构建了一个四重突变体V224E/S254K/Q165E/M304R-CbADH并解析了其三维结构。总体结果表明,热稳定性增强的CbADH突变体中的氨基酸替换通过形成由水分子介导的亚基间离子对和盐桥的扩展网络以及形成新的亚基内盐桥来加强酶的四级结构。