Suppr超能文献

Gremlin: an example of the re-emergence of developmental programmes in diabetic nephropathy.

作者信息

Lappin David W P, McMahon Ruth, Murphy Madeline, Brady Hugh R

机构信息

Department of Medicine and Therapeutics, Mater Misericordiae Hospital, Dublin, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin and The Dublin Molecular Medicine Centre, Dublin, Ireland.

出版信息

Nephrol Dial Transplant. 2002;17 Suppl 9:65-7. doi: 10.1093/ndt/17.suppl_9.65.

Abstract

The past two decades have yielded major advances in our understanding of the pathogenetic mechanisms that cause diabetic nephropathy. Of particular interest is the emerging paradigm of the recapitulation of developmental programmes within the diabetic kidney. Recently we have used the complementary techniques of suppression subtractive hybridization and Affymetrix GeneChips to assess changes in gene expression in human mesangial cells subjected to high ambient glucose concentrations and cyclic mechanical strain in vitro, the latter being models of hyperglycaemia and glomerular hypertension, respectively. In this review, we will focus on the potential role of one such differentially expressed gene, namely gremlin, in the pathogenesis of diabetic nephropathy. In the context of developmental nephrology, gremlin warrants special mention. Gremlin is a 184 amino acid protein and a member of the cysteine knot superfamily. The protein is highly conserved during evolution and is present in soluble and cell-associated forms. It belongs to a novel family of bone morphogenetic protein (BMP) antagonists that includes the head-inducing factor Cerberus and the tumour suppressor DAN. These proteins play important roles in limb development and neural crest cell differentiation. Evidence will be presented that mesangial cell gremlin expression is up-regulated by high ambient glucose, cyclic mechanical strain and transforming growth factor-beta (TGF-beta) and that gremlin may be an important modulator of mesangial cell proliferation and epithelial-mesenchymal transdifferentiation in a diabetic milieu.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验