Suppr超能文献

固态化学中合成规划的一个概念。

A concept for synthesis planning in solid-state chemistry.

作者信息

Jansen Martin

机构信息

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany.

出版信息

Angew Chem Int Ed Engl. 2002 Oct 18;41(20):3746-66. doi: 10.1002/1521-3773(20021018)41:20<3746::AID-ANIE3746>3.0.CO;2-2.

Abstract

There is a widely-held belief that the preparation of new solid-state compounds based on rational design is not possible. Herein, we present a concept that points the way towards a rational design of syntheses in solid-state chemistry. The foundation of our approach is the representation of the whole material world, that is, the known and not-yet-known compounds, on an energy landscape, which gives information about the free energies of these compounds. From this it follows that all chemical compounds capable of existence are present on this landscape. Thus the chemical synthesis always corresponds to the discovery of compounds, not their creation. Consequently, the first step in planning a synthesis can and must be to identify a synthesizable compound. Up to now, materials capable of existence are discovered in the course of an experimental exploration of the energy landscape; however, an a priori identification of a synthesis goal requires an exploration using theoretical methods. In contrast to those computational approaches currently employed for structure determination for fixed composition and already known unit cells, our aims clash with such restrictions and full global optimizations have to be performed on the landscape. Although for reasons of computational feasibility the accuracy of the energy calculations is not yet as high as one would wish, our approach proves to be surprisingly robust. One always finds the already known compounds of a given chemical system, and, in addition, further plausible structure candidates are discovered. The second step of a rational planning of syntheses is the design of feasible synthesis routes. Modeling such routes requires highly accurate computations for realistic thermodynamic conditions, however this is usually beyond our current capabilities. Thus, we have not seriously pursued such a deductive approach; instead we have attempted, to reproduce the "computational annealing" employed during our structure predictions in the experiment. Educts, generated by vapor deposition methods, that are disperse on an atomic level are found to react with surprisingly low activation energies to give highly crystallized products. However, even this technique does not yet provide the possibility to selectively synthesize a specific solid compound. For this final step, modeling and experimental control of nucleation processes will be the key ingredient. Only when viewed superficially, our goal of a "rational design" of solid-state syntheses and the "high-throughput" syntheses are in contradiction. But an exhaustive exploration of the unimaginably large combinatorial diversity of chemistry remains beyond our capabilities, even with an exceedingly high throughput. The future of solid-state synthesis will be found in a union of these two conceptual approaches.

摘要

人们普遍认为,基于合理设计制备新型固态化合物是不可能的。在此,我们提出了一个概念,为固态化学中的合成合理设计指明了方向。我们方法的基础是在能量景观上表示整个物质世界,即已知和未知的化合物,该景观给出了这些化合物的自由能信息。由此可知,所有能够存在的化合物都存在于这个景观上。因此,化学合成总是对应于化合物的发现,而不是它们的创造。所以,规划合成的第一步可以而且必须是识别一种可合成的化合物。到目前为止,能够存在的材料是在对能量景观的实验探索过程中发现的;然而,对合成目标的先验识别需要使用理论方法进行探索。与目前用于固定组成和已知晶胞结构测定的计算方法不同,我们的目标与这些限制相冲突,必须在景观上进行全面的全局优化。尽管由于计算可行性的原因,能量计算的准确性还没有达到人们所期望的那么高,但我们的方法被证明出奇地稳健。总能找到给定化学体系中已知的化合物,此外,还发现了其他合理的结构候选物。合成合理规划的第二步是设计可行的合成路线。对这样的路线进行建模需要针对现实热力学条件进行高精度计算,然而这通常超出了我们目前的能力。因此,我们没有认真采用这种演绎方法;相反,我们试图在实验中重现我们在结构预测过程中使用的“计算退火”。通过气相沉积方法生成的、在原子水平上分散的反应物,被发现以惊人的低活化能反应生成高度结晶的产物。然而,即使是这种技术也还没有提供选择性合成特定固态化合物的可能性。对于这最后一步,成核过程的建模和实验控制将是关键因素。只有从表面上看,我们“合理设计”固态合成的目标与“高通量”合成才相互矛盾。但是,即使具有极高的通量,对化学中难以想象的巨大组合多样性进行详尽探索仍然超出了我们的能力。固态合成的未来将在于这两种概念方法的结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验