Ito Hiroaki, Shitara Kazuki, Wang Yongming, Fujii Kotaro, Yashima Masatomo, Goto Yosuke, Moriyoshi Chikako, Rosero-Navarro Nataly Carolina, Miura Akira, Tadanaga Kiyoharu
Graduate School of Chemical Science and Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo, Hokkaido, 060-8628, Japan.
Joint and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
Adv Sci (Weinh). 2021 Aug;8(15):e2101413. doi: 10.1002/advs.202101413. Epub 2021 Jun 17.
The main approach for exploring metastable materials is via trial-and-error synthesis, and there is limited understanding of how metastable materials are kinetically stabilized. In this study, a metastable phase superionic conductor, β-Li YCl , is discovered through in situ X-ray diffraction after heating a mixture of LiCl and YCl powders. While Cl arrangement is represented as a hexagonal close packed structure in both metastable β-Li YCl synthesized below 600 K and stable α-Li YCl above 600 K, the arrangement of Li and Y in β-Li YCl determined by neutron diffraction brought about the cell with a 1/√3 a-axis and a similar c-axis of stable α-Li YCl . Higher Li ion conductivity and lower activation energy for Li transport are observed in comparison with α-Li YCl . The computationally calculated low migration barrier of Li supports the low activation energy for Li conduction, and the calculated high migration barrier of Y kinetically stabilizes this metastable phase by impeding phase transformation to α-Li YCl . This work shows that the combination of in situ observation of solid-state reactions and computation of the migration energy can facilitate the comprehension of the solid-state reactions allowing kinetic stabilization of metastable materials, and can enable the discovery of new metastable materials in a short time.
探索亚稳材料的主要方法是通过试错合成,而对于亚稳材料如何在动力学上实现稳定,人们的了解有限。在本研究中,通过对LiCl和YCl粉末混合物加热后的原位X射线衍射,发现了一种亚稳相超离子导体β-LiYCl。虽然在600K以下合成的亚稳β-LiYCl和600K以上稳定的α-LiYCl中,Cl的排列均表现为六方密堆积结构,但通过中子衍射确定的β-LiYCl中Li和Y的排列产生了一个具有1/√3 a轴和与稳定α-LiYCl相似c轴的晶胞。与α-LiYCl相比,观察到β-LiYCl具有更高的锂离子电导率和更低的锂传输活化能。计算得出的Li的低迁移势垒支持了Li传导的低活化能,而计算得出的Y的高迁移势垒通过阻碍向α-LiYCl的相变在动力学上稳定了这个亚稳相。这项工作表明,固态反应的原位观察与迁移能计算相结合,可以促进对实现亚稳材料动力学稳定的固态反应的理解,并能在短时间内发现新的亚稳材料。