Rozmahel Richard, Mount Howard T J, Chen Fusheng, Nguyen Van, Huang Jean, Erdebil Serap, Liauw Jennifer, Yu Gang, Hasegawa Hiroshe, Gu YongJun, Song You-Qiang, Schmidt Stephen D, Nixon Ralph A, Mathews Paul M, Bergeron Catherine, Fraser Paul, Westaway David, St George-Hyslop Peter
Center for Research in Neurodegenerative Diseases, Department of Pharmacology, University of Toronto, Toronto, ON, Canada M5S 1A8.
Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14452-7. doi: 10.1073/pnas.222413999. Epub 2002 Oct 18.
Presenilin 1 (PS1), presenilin 2, and nicastrin form high molecular weight complexes that are necessary for the endoproteolysis of several type 1 transmembrane proteins, including amyloid precursor protein (APP) and the Notch receptor, by apparently similar mechanisms. The cleavage of the Notch receptor at the "S3-site" releases a C-terminal cytoplasmic fragment (Notch intracellular domain) that acts as the intracellular transduction molecule for Notch activation. Missense mutations in the presenilins cause familial Alzheimer's disease by augmenting the "gamma-secretase" cleavage of APP and overproducing one of the proteolytic derivatives, the Abeta peptide. Null mutations in PS1 inhibit both gamma-secretase cleavage of APP and S3-site cleavage of the Notch receptor. Mice lacking PS1 function have defective Notch signaling and die perinatally with severe skeletal and brain deformities. We report here that a genetic modifier on mouse distal chromosome 1, coinciding with the locus containing Nicastrin, influences presenilin-mediated Notch S3-site cleavage and the resultant Notch phenotype without affecting presenilin-mediated APP gamma-site cleavage. Two missense substitutions of residues conserved among vertebrates have been identified in nicastrin. These results indicate that Notch S3-site cleavage and APP gamma-site cleavage are distinct presenilin-dependent processes and support a functional interaction between nicastrin and presenilins in vertebrates. The dissociation of Notch S3-site and APP gamma-site cleavage activities will facilitate development of gamma-secretase inhibitors for treatment of Alzheimer's disease.
早老素1(PS1)、早老素2和尼卡斯特林形成高分子量复合物,这些复合物对于几种1型跨膜蛋白(包括淀粉样前体蛋白(APP)和Notch受体)的内蛋白水解是必需的,其机制明显相似。Notch受体在“S3位点”的切割释放出一个C端细胞质片段(Notch细胞内结构域),该片段作为Notch激活的细胞内转导分子。早老素中的错义突变通过增强APP的“γ-分泌酶”切割并过量产生一种蛋白水解衍生物β淀粉样肽,从而导致家族性阿尔茨海默病。PS1中的无效突变既抑制APP的γ-分泌酶切割,也抑制Notch受体的S3位点切割。缺乏PS1功能的小鼠具有缺陷的Notch信号传导,在围产期死亡,伴有严重的骨骼和脑部畸形。我们在此报告,小鼠远端1号染色体上的一个遗传修饰因子,与包含尼卡斯特林的基因座一致,影响早老素介导的Notch S3位点切割及由此产生的Notch表型,而不影响早老素介导的APP γ位点切割。在尼卡斯特林中已鉴定出脊椎动物中保守的两个残基错义替代。这些结果表明,Notch S3位点切割和APP γ位点切割是不同的早老素依赖性过程,并支持脊椎动物中尼卡斯特林和早老素之间的功能相互作用。Notch S3位点和APP γ位点切割活性的解离将促进用于治疗阿尔茨海默病的γ-分泌酶抑制剂的开发。