Radresa Olivier, Ogata Koji, Wodak Shoshana, Ruysschaert Jean-Marie, Goormaghtigh Erik
Service de Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Bruxelles, Belgium.
Eur J Biochem. 2002 Nov;269(21):5246-58. doi: 10.1046/j.1432-1033.2002.03236.x.
Homology modeling in combination with transmembrane topology predictions are used to build the atomic model of Neurospora crassa plasma membrane H+-ATPase, using as template the 2.6 A crystal structure of rabbit sarcoplasmic reticulum Ca2+-ATPase [Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. (2000) Nature 405, 647-655]. Comparison of the two calcium-binding sites in the crystal structure of Ca2+-ATPase with the equivalent region in the H+-ATPase model shows that the latter is devoid of most of the negatively charged groups required to bind the cations, suggesting a different role for this region. Using the built model, a pathway for proton transport is then proposed from computed locations of internal polar cavities, large enough to contain at least one water molecule. As a control, the same approach is applied to the high-resolution crystal structure of halorhodopsin and the proton pump bacteriorhodopsin. This revealed a striking correspondence between the positions of internal polar cavities, those of crystallographic water molecules and, in the case of bacteriorhodopsin, the residues mediating proton translocation. In our H+-ATPase model, most of these cavities are in contact with residues previously shown to affect coupling of proton translocation to ATP hydrolysis. A string of six polar cavities identified in the cytoplasmic domain, the most accurate part of the model, suggests a proton entry path starting close to the phosphorylation site. Strikingly, members of the haloacid dehalogenase superfamily, which are close structural homologs of this domain but do not share the same function, display only one polar cavity in the vicinity of the conserved catalytic Asp residue.
同源建模结合跨膜拓扑预测被用于构建粗糙脉孢菌质膜H⁺-ATP酶的原子模型,以兔肌浆网Ca²⁺-ATP酶的2.6 Å晶体结构[丰岛,C.,中迫,M.,野村,H. & 小川,H.(2000年)《自然》405, 647 - 655]作为模板。将Ca²⁺-ATP酶晶体结构中的两个钙结合位点与H⁺-ATP酶模型中的等效区域进行比较,结果表明后者缺乏结合阳离子所需的大部分带负电荷基团,这表明该区域具有不同的作用。利用构建的模型,然后从计算得到的内部极性腔位置提出了一条质子运输途径,这些极性腔大到足以容纳至少一个水分子。作为对照,同样的方法应用于嗜盐菌视紫红质和质子泵细菌视紫红质的高分辨率晶体结构。这揭示了内部极性腔的位置、晶体学水分子的位置以及在细菌视紫红质情况下介导质子转运的残基之间存在惊人的对应关系。在我们的H⁺-ATP酶模型中,这些腔中的大多数与先前显示影响质子转运与ATP水解偶联的残基接触。在模型最精确的细胞质结构域中识别出一串六个极性腔,这表明质子进入途径始于靠近磷酸化位点的位置。引人注目的是,卤代酸脱卤酶超家族的成员,它们是该结构域的紧密结构同源物但不具有相同功能,在保守催化天冬氨酸残基附近仅显示一个极性腔。