Callegari Tiziano, Caumo Andrea, Cobelli Claudio
Department of Information Engineering, University of Padova, Italy.
Ann Biomed Eng. 2002 Jul-Aug;30(7):961-8. doi: 10.1114/1.1507328.
Bayesian approaches to model identification [e.g., maximum a posteriori (MAP) estimation] are receiving increasing attention in metabolism since important quantitative knowledge has become available in the last decades, e.g., from tracer experiments. By suitably exploiting this knowledge, more complex physiological models than those solely based on experimental data (Fisherian approach) become resolvable. While ADAPT II is the reference software for MAP estimation in pharmacokinetic/pharmacodynamic/metabolic system analysis, another popular, user-friendly and state-of-the-art software is SAAM II. However, SAAM II does not handle a priori information on correlation among parameters, thus allowing a limited version of MAP estimation to be performed. The aim here is twofold. First, we show that this limitation of SAAM II can be easily overcome by resorting to a probability theory result. Second, we test SAAM II vs ADAPT II implementation of MAP estimation in a real case study: the Bayesian identification of a recently proposed two-compartment minimal model of glucose kinetics during an intravenous glucose tolerance test. SAAM II MAP estimates of glucose effectiveness (SG) and insulin sensitivity (S(I)) obtained in a group of 22 healthy humans are in excellent agreement with those of ADAPT II: S(G) = 2.84 +/- 0.27 vs. 2.84 +/- 0.27 (mlmin(-1) kg(-1), mean +/- SD) and S(I) = 11.46 +/- 1.69 vs. 11.47 +/- 1.69 [10(-2) ml kg(-1) min(-1)/ (microU ml(-1))]. The SAAM II vs. ADAPT II estimates are virtually identical (P > 0.44 and 0.68 for S(G) and S(I), respectively) and also closely correlated (p = 0.9998 and 0.9999).
贝叶斯模型识别方法[例如最大后验概率(MAP)估计]在代谢领域正受到越来越多的关注,因为在过去几十年中已经获得了重要的定量知识,例如来自示踪实验的数据。通过适当地利用这些知识,比仅基于实验数据的模型(费舍尔方法)更复杂的生理模型变得可以求解。虽然ADAPT II是药代动力学/药效学/代谢系统分析中MAP估计的参考软件,但另一个流行、用户友好且先进的软件是SAAM II。然而,SAAM II不处理参数之间相关性的先验信息,因此只能进行有限版本的MAP估计。本文的目的有两个。首先,我们表明通过借助概率论结果可以轻松克服SAAM II的这一局限性。其次,我们在一个实际案例研究中测试SAAM II与ADAPT II在MAP估计方面的实现:在静脉葡萄糖耐量试验期间对最近提出的两室葡萄糖动力学最小模型进行贝叶斯识别。在一组22名健康人中获得的SAAM II对葡萄糖效能(SG)和胰岛素敏感性(S(I))的MAP估计与ADAPT II的估计结果非常一致:SG = 2.84±0.27对比2.84±0.27(mlmin(-1) kg(-1),平均值±标准差),S(I) = 11.46±1.69对比11.47±1.69 [10(-2) ml kg(-1) min(-1)/ (microU ml(-1))]。SAAM II与ADAPT II的估计值几乎相同(SG和S(I)的P值分别> 0.44和0.68),并且相关性也很强(p = 0.9998和0.9999)。