Suppr超能文献

通过单正电子发射计算机断层扫描/计算机断层扫描成像从动态心脏成像数据中反卷积血浆药代动力学。

Deconvolution of Plasma Pharmacokinetics from Dynamic Heart Imaging Data Obtained by Single Positron Emission Computed Tomography/Computed Tomography Imaging.

机构信息

Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (Z.W., L.W., M.E., R.A.S., K.K.K.) and Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., P.H.M., V.J.L.).

Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (Z.W., L.W., M.E., R.A.S., K.K.K.) and Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota (G.L.C., P.H.M., V.J.L.)

出版信息

J Pharmacol Exp Ther. 2023 Jul;386(1):102-110. doi: 10.1124/jpet.122.001545. Epub 2023 May 23.

Abstract

Plasma pharmacokinetic (PK) data are required as an input function for graphical analysis of single positron emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/CT (PET/CT) data to evaluate tissue influx rate of radiotracers. Dynamic heart imaging data are often used as a surrogate of plasma PK. However, accumulation of radiolabel in the heart tissue may cause overprediction of plasma PK. Therefore, we developed a compartmental model, which involves forcing functions to describe intact and degraded radiolabeled proteins in plasma and their accumulation in heart tissue, to deconvolve plasma PK of I-amyloid beta 40 (I-A ) and I-insulin from their dynamic heart imaging data. The three-compartment model was shown to adequately describe the plasma concentration-time profile of intact/degraded proteins and the heart radioactivity time data obtained from SPECT/CT imaging for both tracers. The model was successfully applied to deconvolve the plasma PK of both tracers from their naïve datasets of dynamic heart imaging. In agreement with our previous observations made by conventional serial plasma sampling, the deconvolved plasma PK of I-A and I-insulin in young mice exhibited lower area under the curve than aged mice. Further, Patlak plot parameters extracted using deconvolved plasma PK as input function successfully recapitulated age-dependent plasma-to-brain influx kinetics changes. Therefore, the compartment model developed in this study provides a novel approach to deconvolve plasma PK of radiotracers from their noninvasive dynamic heart imaging. This method facilitates the application of preclinical SPECT/PET imaging data to characterize distribution kinetics of tracers where simultaneous plasma sampling is not feasible. SIGNIFICANCE STATEMENT: Knowledge of plasma pharmacokinetics (PK) of a radiotracer is necessary to accurately estimate its plasma-to-brain influx. However, simultaneous plasma sampling during dynamic imaging procedures is not always feasible. In the current study, we developed approaches to deconvolve plasma PK from dynamic heart imaging data of two model radiotracers, I-amyloid beta 40 (I-A ) and I-insulin. This novel method is expected to minimize the need for conducting additional plasma PK studies and allow for accurate estimation of the brain influx rate.

摘要

需要血浆药代动力学(PK)数据作为单正电子发射计算机断层扫描/计算机断层扫描(SPECT/CT)和正电子发射断层扫描/计算机断层扫描(PET/CT)数据的输入函数,以评估放射性示踪剂的组织内流率。动态心脏成像数据通常用作血浆 PK 的替代物。然而,放射性标记物在心脏组织中的积累可能导致对血浆 PK 的过度预测。因此,我们开发了一种房室模型,该模型涉及强迫函数来描述血浆中完整和降解的放射性标记蛋白及其在心脏组织中的积累,并从动态心脏成像数据中解卷积 I-淀粉样蛋白β 40(I-A)和 I-胰岛素的血浆 PK。该三房室模型能够充分描述两种示踪剂的完整/降解蛋白的血浆浓度-时间曲线和 SPECT/CT 成像获得的心脏放射性时间数据。该模型成功地应用于从动态心脏成像的原始数据集解卷积两种示踪剂的血浆 PK。与我们之前通过常规连续血浆采样观察到的结果一致,年轻小鼠的 I-A 和 I-胰岛素的解卷积血浆 PK 的曲线下面积低于老年小鼠。此外,使用解卷积的血浆 PK 作为输入函数提取的 Patlak 图参数成功地再现了年龄依赖性的血浆向脑内流入动力学变化。因此,本研究中开发的房室模型为从非侵入性动态心脏成像中解卷积放射性示踪剂的血浆 PK 提供了一种新方法。该方法促进了在无法同时进行血浆采样的情况下,将临床前 SPECT/PET 成像数据应用于示踪剂分布动力学的特征描述。

意义陈述

了解放射性示踪剂的血浆药代动力学(PK)对于准确估计其血浆向脑内的流入是必要的。然而,在动态成像过程中同时进行血浆采样并不总是可行的。在本研究中,我们开发了从两种模型放射性示踪剂的动态心脏成像数据中解卷积血浆 PK 的方法,即 I-淀粉样蛋白β 40(I-A)和 I-胰岛素。这种新方法有望减少进行额外的血浆 PK 研究的需要,并允许准确估计脑内流入率。

相似文献

3
[I]IBETA: A New Aβ Plaque Positron Emission Tomography Imaging Agent for Alzheimer's Disease.
Molecules. 2022 Jul 17;27(14):4552. doi: 10.3390/molecules27144552.
5
A computational positron emission tomography simulation model for imaging beta-amyloid in mice.
Mol Imaging Biol. 2005 Jan-Feb;7(1):69-77. doi: 10.1007/s11307-005-0952-9.
6
Preclinical and clinical study on [F]DRKXH1: a novel β-amyloid PET tracer for Alzheimer's disease.
Eur J Nucl Med Mol Imaging. 2022 Jan;49(2):652-663. doi: 10.1007/s00259-021-05421-0. Epub 2021 Jul 22.
8
Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data.
J Nucl Med. 2007 Dec;48(12):2037-45. doi: 10.2967/jnumed.107.041061. Epub 2007 Nov 15.
9
Application of a whole-body pharmacokinetic model for targeted radionuclide therapy to NM404 and FLT.
Phys Med Biol. 2012 Mar 21;57(6):1641-57. doi: 10.1088/0031-9155/57/6/1641. Epub 2012 Mar 7.

本文引用的文献

1
Design, Synthesis, and Preliminary Evaluation of [Ga]Ga-NOTA-Insulin as a PET Probe in an Alzheimer's Disease Mouse Model.
Bioconjug Chem. 2022 May 18;33(5):892-906. doi: 10.1021/acs.bioconjchem.2c00126. Epub 2022 Apr 14.
3
Insulin signaling in the heart.
Am J Physiol Endocrinol Metab. 2021 Jul 1;321(1):E130-E145. doi: 10.1152/ajpendo.00158.2021. Epub 2021 May 31.
4
Distinct Uptake Kinetics of Alzheimer Disease Amyloid- 40 and 42 at the Blood-Brain Barrier Endothelium.
J Pharmacol Exp Ther. 2021 Mar;376(3):482-490. doi: 10.1124/jpet.120.000086. Epub 2020 Dec 10.
5
Blood Pharmacokinetics Imaging by Noninvasive Heart Fluorescence Tomography and Application to Kidney Glomerular Filtration Rate Assessment.
J Pharmacol Exp Ther. 2019 Aug;370(2):288-298. doi: 10.1124/jpet.119.257071. Epub 2019 May 31.
6
Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing.
Front Cardiovasc Med. 2019 Apr 26;6:51. doi: 10.3389/fcvm.2019.00051. eCollection 2019.
8
Cardiac amyloidosis.
Clin Med (Lond). 2018 Apr 1;18(Suppl 2):s30-s35. doi: 10.7861/clinmedicine.18-2-s30.
9
Insulin differentially affects the distribution kinetics of amyloid beta 40 and 42 in plasma and brain.
J Cereb Blood Flow Metab. 2018 May;38(5):904-918. doi: 10.1177/0271678X17709709. Epub 2017 Jun 1.
10
Aβ Amyloid Pathology Affects the Hearts of Patients With Alzheimer's Disease: Mind the Heart.
J Am Coll Cardiol. 2016 Dec 6;68(22):2395-2407. doi: 10.1016/j.jacc.2016.08.073.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验