Suppr超能文献

贝叶斯估计局部骨肉瘤儿童和青年中甲氨蝶呤的药代动力学参数及曲线下面积

Bayesian estimation of methotrexate pharmacokinetic parameters and area under the curve in children and young adults with localised osteosarcoma.

作者信息

Rousseau Annick, Sabot Christophe, Delepine Nicole, Delepine Gerard, Debord Jean, Lachâtre Gerard, Marquet Pierre

机构信息

Department of Pharmacology and Toxicology, University Hospital, Limoges, France.

出版信息

Clin Pharmacokinet. 2002;41(13):1095-104. doi: 10.2165/00003088-200241130-00006.

Abstract

BACKGROUND

Methotrexate is the most efficient anticancer drug in osteosarcoma. It requires individual exposure monitoring because of the high doses used, its wide interpatient pharmacokinetic variability and the existence of demonstrated relationships between efficacy, toxicity and serum drug concentrations.

OBJECTIVE

To develop a maximum a posteriori (MAP) Bayesian estimator able to predict individual pharmacokinetic parameters and exposure indices such as area under the curve (AUC) for methotrexate from a few blood samples, in order to prevent toxicity and facilitate further studies of the relationships between efficacy and exposure.

METHODS

Methotrexate population pharmacokinetics were estimated by a retrospective analysis of concentration data from 40 children and young adults by using the nonparametric expectation maximisation method NPEM. A linear two-compartment model with elimination from the central compartment was assumed. Individual pharmacokinetic parameters and AUC were subsequently estimated in 30 other young patients, using MAP Bayesian estimation as implemented in two programs, ADAPT II and an inhouse program Winphar((R)).

RESULTS

The pharmacokinetic parameters used in the model were the volume of the central compartment (V(1)) and the transfer constants (k(10), k(12) and k(21)). The mean values (with percentage coefficient of variation) obtained were: 18.24L (54.1%) and 0.41 (42.3%), 0.0168 (68.7%), and 0.1069 (61.3%) h(-1), respectively. Bayesian forecasting enabled nonbiased estimation of AUC and systemic clearance using a schedule with two sampling times (6 and 24 hours after the beginning of the infusion) and either program. Collection of a third sample at 4 hours improved the precision.

CONCLUSION

The Bayesian adaptive method developed herein allows accurate estimation of individual exposure to methotrexate and can easily be used in clinical practice.

摘要

背景

甲氨蝶呤是骨肉瘤治疗中最有效的抗癌药物。由于使用剂量高、患者间药代动力学变异性大以及已证实的疗效、毒性与血清药物浓度之间的关系,需要进行个体暴露监测。

目的

开发一种最大后验(MAP)贝叶斯估计器,能够根据少量血样预测甲氨蝶呤的个体药代动力学参数和暴露指数,如曲线下面积(AUC),以预防毒性并促进疗效与暴露关系的进一步研究。

方法

采用非参数期望最大化方法(NPEM)对40名儿童和青年成人的浓度数据进行回顾性分析,估计甲氨蝶呤群体药代动力学。假定采用从中央室消除的线性二室模型。随后,使用两个程序ADAPT II和内部程序Winphar((R))中实现的MAP贝叶斯估计法,对另外30名年轻患者的个体药代动力学参数和AUC进行估计。

结果

模型中使用的药代动力学参数为中央室容积(V(1))和转运常数(k(10)、k(12)和k(21))。得到的平均值(变异系数百分比)分别为:18.24L(54.1%)、0.41(42.3%)、0.0168(68.7%)和0.1069(61.3%)h(-1)。贝叶斯预测能够使用两个采样时间(输注开始后6小时和24小时)的方案,通过任一程序对AUC和全身清除率进行无偏估计。在4小时采集第三个样本可提高精度。

结论

本文开发的贝叶斯自适应方法能够准确估计个体甲氨蝶呤暴露量,且易于在临床实践中应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验