Suppr超能文献

空间位阻和电空间稳定乳液聚合。动力学与制备

Sterically and electrosterically stabilized emulsion polymerization. Kinetics and preparation.

作者信息

Capek Ignác

机构信息

Polymer Institute, Slovak Academy of Sciences, Bratislava.

出版信息

Adv Colloid Interface Sci. 2002 Oct 21;99(2):77-162. doi: 10.1016/s0001-8686(02)00005-2.

Abstract

The principal subject discussed in the current paper is the radical polymerization in the aqueous emulsions of unsaturated monomers (styrene, alkyl (meth)acrylates, etc.) stabilized by non-ionic and ionic/non-ionic emulsifiers. The sterically and electrosterically stabilized emulsion polymerization is a classical method which allows to prepare polymer lattices with large particles and a narrow particle size distribution. In spite of the similarities between electrostatically and sterically stabilized emulsion polymerizations, there are large differences in the polymerization rate, particle size and nucleation mode due to varying solubility of emulsifiers in oil and water phases, micelle sizes and thickness of the interfacial layer at the particle surface. The well-known Smith-Ewart theory mostly applicable for ionic emulsifier, predicts that the number of particles nucleated is proportional to the concentration of emulsifier up to 0.6. The thin interfacial layer at the particle surface, the large surface area of relatively small polymer particles and high stability of small particles lead to rapid polymerization. In the sterically stabilized emulsion polymerization the reaction order is significantly above 0.6. This was ascribed to limited flocculation of polymer particles at low concentration of emulsifier, due to preferential location of emulsifier in the monomer phase. Polymerization in the large particles deviates from the zero-one approach but the pseudo-bulk kinetics can be operative. The thick interfacial layer can act as a barrier for entering radicals due to which the radical entry efficiency and also the rate of polymerization are depressed. The high oil-solubility of non-ionic emulsifier decreases the initial micellar amount of emulsifier available for particle nucleation, which induces non-stationary state polymerization. The continuous release of emulsifier from the monomer phase and dismantling of the non-micellar aggregates maintained a high level of free emulsifier for additional nucleation. In the mixed ionic/non-ionic emulsifiers, the released non-ionic emulsifier can displace the ionic emulsifier at the particle surface, which then takes part in additional nucleation. The non-stationary state polymerization can be induced by the addition of a small amount of ionic emulsifier or the incorporation of ionic groups onto the particle surface. Considering the ionic sites as no-adsorption sites, the equilibrium adsorption layer can be thought of as consisting of a uniform coverage with holes. The de-organization of the interfacial layer can be increased by interparticle interaction via extended PEO chains--a bridging flocculation mechanism. The low overall activation energy for the sterically stabilized emulsion polymerization resulted from a decreased barrier for entering radicals at high temperature and increased particle flocculation.

摘要

本文讨论的主要主题是由非离子型和离子/非离子型乳化剂稳定的不饱和单体(苯乙烯、烷基(甲基)丙烯酸酯等)水乳液中的自由基聚合反应。空间稳定和电空间稳定乳液聚合是一种经典方法,可用于制备具有大颗粒和窄粒度分布的聚合物胶乳。尽管静电稳定和空间稳定乳液聚合之间存在相似性,但由于乳化剂在油相和水相中的溶解度、胶束尺寸以及颗粒表面界面层厚度的不同,聚合速率、颗粒尺寸和成核方式存在很大差异。著名的史密斯 - 埃沃特理论主要适用于离子型乳化剂,预测成核颗粒的数量与乳化剂浓度成正比,最高可达0.6。颗粒表面的薄界面层、相对较小聚合物颗粒的大表面积以及小颗粒的高稳定性导致快速聚合。在空间稳定乳液聚合中,反应级数明显高于0.6。这归因于在低乳化剂浓度下聚合物颗粒的有限絮凝,这是由于乳化剂优先位于单体相中。大颗粒中的聚合偏离了零 - 一方法,但假本体动力学可能起作用。厚界面层可作为自由基进入的屏障,因此自由基进入效率以及聚合速率都会降低。非离子型乳化剂的高油溶性降低了可用于颗粒成核的初始胶束乳化剂数量,从而引发非稳态聚合。乳化剂从单体相中持续释放以及非胶束聚集体的解体维持了高水平的游离乳化剂用于额外成核。在混合离子/非离子型乳化剂中,释放的非离子型乳化剂可取代颗粒表面的离子型乳化剂,然后离子型乳化剂参与额外成核。加入少量离子型乳化剂或在颗粒表面引入离子基团可引发非稳态聚合。将离子位点视为非吸附位点,平衡吸附层可被认为是由带有孔洞的均匀覆盖层组成。通过扩展的聚环氧乙烷链进行颗粒间相互作用(桥连絮凝机制)可增加界面层的无序度。空间稳定乳液聚合的低总体活化能是由于高温下自由基进入的屏障降低以及颗粒絮凝增加所致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验