Stepanov A I, Beburov M Iu, Zhdanov V G
Genetika. 1975;11(6):105-13.
3 groups of Eremothecium ashbyii mutants resistant to 5-10(-3) M 2,6-diaminopurine (DAP) ahve been obtained. The mutants of the 1st group (Dap-r) are selected from the initial susceptible strain by the ability to grow in the presence of 5-10(-3) M DAP. The mutants of the 2nd group (Azg-Dap-r) are selected in the selective background of two analogues of 5-10(-3) M DAP and 10(-4) M 8-azaguanine (AG). The mutants of the 3rd group (Azg-r - DAP-r) are isolated from the mutant Azg-r 34 resistant to 10(-4) M AG. The results of studying cross-resistance of mutants to DAP, AG and 8-azaadenine (AA) show that Dap-r and Azg-Dap-r mutants in contrast to Azg-r - Dap-r, have common phenotypic properties and can grow only on the analogues of adenine. DAP, but not AA, eliminates the inhibitory effect of AG on the growth of these mutants. This effect is probably due to deaminating DAP to guanine. Mutants Azg-r - Dap-r retain the initial resistance to 10(-4) M AG, but are susceptible to higher concentrations of AG and in this case DAP does not eliminate the inhibitory effect of AG. In all mutants obtained the effectiveness of the incorporation of 14C-adenine (but not 14C-guanine) is sharply reduced, thus indicating the absence of adenosine-monophosphate pyrophosphorylase activity. The mutants do not excrete purine-like compounds into the medium. In the course of the continuous growth of mutants in the presence of DAP but not of guanine the red intracellular pigment is formed which seems to be a complex of riboflavin with DAP. A disturbance in the synthesis of adenosine monophosphate pyrophosphorylase does not influence practically the level of the synthesis of riboflavin in E. ashbyii.