Suppr超能文献

In vitro photodynamic properties of chalcogenopyrylium analogues of the thiopyrylium antitumor agent AA1.

作者信息

Brennan Nancy K, Hall Jonathan P, Davies Sherry R, Gollnick Sandra O, Oseroff Allan R, Gibson Scott L, Hilf Russell, Detty Michael R

机构信息

Department of Chemistry, University at Buffalo, The State University of New York, 14260, USA.

出版信息

J Med Chem. 2002 Nov 7;45(23):5123-35. doi: 10.1021/jm020260m.

Abstract

Several series of chalcogenopyrylium dyes were prepared with one or two 4-anilino substituents at the 2- and 6-positions and with phenyl, 4-N,N-dimethylanilino, or 4-(N-morphilino)phenyl substituents at 2- and/or 4-positions. The dye series are all related in structure to AA1, a thiopyrylium dye that targets mitochondria. The chalcogenopyrylium nuclei included sulfur, selenium, and tellurium at the 1-position. Key intermediates in the dye synthesis were the corresponding Delta-4H-chalcogenopyran-4-ones. All of the dyes of this study were evaluated for dark and phototoxicity toward Colo-26 cells in vitro. There was no correlation of dark toxicity with either the reduction potential of the chalcogenopyrylium dye or the n-octanol/water partition coefficient, log P. Several of the dyes of this study (thiopyrylium dyes 1-S and 13-S, selenopyrylium dyes 1-Se, 2-Se, 3-Se, 4-Se, 13-Se, 14-Se, and 27-Se, and telluropyrylium dye 13-Te) showed added phototoxicity upon irradiation. Dyes with the highest therapeutic ratio as measured by dark toxicity/phototoxicity (15 J cm(-2) of 360-800-nm light) had values of log P of 1.0-1.2. Studies of cytochrome c oxidase activity in whole R3230AC cells suggested that dyes 1-S and 3-Se, with values of log P of 2.2 and 1.7, respectively, were localized in the mitochondria. Cytocrome c oxidase activity in whole cells was inhibited by 1-S and 3-Se in the dark. Chalcogenopyrylium dyes 2-Se, 4-Se, 13-Te, and 14-Se inhibited whole-cell cytochrome c oxidase activity only following irradiation, which suggests that these dyes relocalized to mitochondria following irradiation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验