Wolters Andrew M, Jayawickrama Dimuthu A, Sweedler Jonathan V
Department of Chemistry and the Beckman Institute, University of Illinois, Urbana 61801, USA.
Curr Opin Chem Biol. 2002 Oct;6(5):711-6. doi: 10.1016/s1367-5931(02)00382-4.
NMR spectroscopy is increasingly being used to characterize microliter and smaller-volume samples. Substances at picomole levels have been identified using NMR spectrometers equipped with microcoil-based probes. NMR probes that incorporate multiple sample chambers enable higher-throughput NMR experiments. Hyphenation of capillary-scale separations and microcoil NMR has also decreased analysis time of mixtures. For example, capillary isotachophoresis/NMR allows the highest mass sensitivity nanoliter-volume flow cells to be used with low microliter volume samples because isotachophoresis concentrates the microliter volume sample into the nanoliter volume NMR detection probe. In addition, the diagnostic capabilities of NMR spectroscopy allow the physico-chemical aspects of a capillary separation process to be characterized on-line. Because of such advances, the application of NMR to smaller samples continues to grow.
核磁共振光谱法越来越多地用于表征微升及更小体积的样品。使用配备基于微线圈探头的核磁共振光谱仪已鉴定出皮摩尔水平的物质。包含多个样品腔的核磁共振探头能够实现更高通量的核磁共振实验。毛细管规模分离与微线圈核磁共振的联用也缩短了混合物的分析时间。例如,毛细管等速电泳/核磁共振允许将最高质量灵敏度的纳升体积流通池与低微升体积样品一起使用,因为等速电泳可将低微升体积样品浓缩到纳升体积的核磁共振检测探头中。此外,核磁共振光谱法的诊断能力使毛细管分离过程的物理化学方面能够在线表征。由于这些进展,核磁共振在较小样品上的应用持续增长。