Baldocchi Dennis D, Wilson Kell B, Gu Lianhong
Ecosystem Science Division, Department of Environmental Science, Policy and Management, 151 Hilgard Hall, University of California-Berkeley, Berkeley, CA 94720, USA.
Tree Physiol. 2002 Nov;22(15-16):1065-77. doi: 10.1093/treephys/22.15-16.1065.
This paper focuses on how canopy structure, its physiological functioning and the environment interact to control and drive the exchange of carbon dioxide (CO2) and water vapor between a temperate forest stand and the atmosphere. First, we present an overview of how temporal and spatial variations in canopy structure (e.g., leaf area index, species, leaf inclination angles, leaf clumping) and physiological functioning (e.g., maximal stomatal conductance, photosynthetic capacity) modulate CO2 and water vapor fluxes. Then, with the biophysical model CANOAK, we quantify the effects of leaf dimension and thickness, vertical variations in leaf area and photosynthetic capacity, leaf clumping, leaf inclination angles, photosynthetic capacity, stomatal conductance and weather on the annual sums of CO2, water vapor and sensible heat exchange. Finally, we discuss how much detail is needed in a model to predict fluxes of CO2 and water vapor with acceptable fidelity.
本文聚焦于冠层结构、其生理功能与环境如何相互作用,以控制和驱动温带林分与大气之间的二氧化碳(CO₂)和水汽交换。首先,我们概述冠层结构(例如叶面积指数、物种、叶片倾角、叶片聚集)和生理功能(例如最大气孔导度、光合能力)的时空变化如何调节CO₂和水汽通量。然后,利用生物物理模型CANOAK,我们量化叶片尺寸和厚度、叶面积和光合能力的垂直变化、叶片聚集、叶片倾角、光合能力、气孔导度和天气对CO₂、水汽和感热交换年总量的影响。最后,我们讨论在一个模型中需要多少细节才能以可接受的精度预测CO₂和水汽通量。