Suppr超能文献

少关节型幼年特发性关节炎中葡萄膜炎严重病程的早期预测指标

Early predictors of severe course of uveitis in oligoarticular juvenile idiopathic arthritis.

作者信息

Zulian Francesco, Martini Giorgia, Falcini Fernanda, Gerloni Valeria, Zannin Maria Elisabetta, Pinello Luisa, Fantini Flavio, Facchin Paola

机构信息

Department of Pediatrics, University of Padua, Padua, Italy.

出版信息

J Rheumatol. 2002 Nov;29(11):2446-53.

Abstract

OBJECTIVE

To determine whether demographic, clinical, and laboratory variables at onset of arthritis can predict the development and the severity of anterior uveitis (AU) in oligoarticular juvenile idiopathic arthritis (JIA).

METHODS

In a retrospective study, a cohort of 366 patients with oligoarticular onset JIA from 3 pediatric rheumatology centers were evaluated. Patients were classified in 3 groups: severe uveitis (SU) with a mean >/= 2 uveitis relapses/year with complications or need for immunosuppressive therapy; mild uveitis (MU) with a mean </= 1 uveitis relapse/year with no complications; and no uveitis. Variables that were significant with univariate tests or were clinically relevant for each outcome underwent multivariate logistic regression analysis.

RESULTS

There were 316 patients available for analyses: 66 in the SU group, 64 in the MU group, and 186 in the no uveitis group. Multivariate analysis showed the following factors to be significant as predictors of AU onset: low age at onset (OR 0.96), a2-globulin plasma concentration (OR 1.34), and HLA-A19 (OR 2.87), B22 (OR 4.51) and DR9 (OR 2.33), while HLA-DR1 conferred protection (OR 0.13). This model was not good in predicting which patient would develop uveitis (sensitivity 55%, specificity 26%). Time interval between onset of arthritis and the first AU and elevated a2-globulin level in the serum were the best predictors of AU severity (OR 1.62 and 0.85, respectively). When applied prospectively, the model revealed good sensitivity (89.2%), specificity (76.1%), and efficiency (86.3%).

CONCLUSION

Clinical and laboratory variables measurable at onset of arthritis can be used to predict severity of the course of AU in oligoarticular JIA, but not its onset. More accurate prediction can shorten or lengthen the intervals between ophthalmologic evaluations and can change the therapeutic approach undertaken on the basis of expected disease severity.

摘要

目的

确定关节炎发病时的人口统计学、临床和实验室变量是否能够预测少关节型幼年特发性关节炎(JIA)患者前葡萄膜炎(AU)的发生及严重程度。

方法

在一项回顾性研究中,对来自3个儿科风湿病中心的366例少关节型起病的JIA患者进行了评估。患者被分为3组:重度葡萄膜炎(SU),平均每年葡萄膜炎复发≥2次且伴有并发症或需要免疫抑制治疗;轻度葡萄膜炎(MU),平均每年葡萄膜炎复发≤1次且无并发症;无葡萄膜炎。对单变量检验有显著意义或与各结局临床相关的变量进行多因素逻辑回归分析。

结果

共有316例患者可供分析:SU组66例,MU组64例,无葡萄膜炎组186例。多因素分析显示,以下因素作为AU发病的预测指标具有显著意义:发病年龄小(比值比[OR]0.96)、α2球蛋白血浆浓度(OR 1.34)以及HLA-A19(OR 2.87)、B22(OR 4.51)和DR9(OR 2.33),而HLA-DR1具有保护作用(OR 0.13)。该模型在预测哪些患者会发生葡萄膜炎方面效果不佳(敏感性55%,特异性26%)。关节炎发病至首次发生AU的时间间隔以及血清中α2球蛋白水平升高是AU严重程度的最佳预测指标(分别为OR 1.62和0.85)。前瞻性应用该模型时,显示出良好的敏感性(89.2%)、特异性(76.1%)和有效性(86.3%)。

结论

关节炎发病时可测量的临床和实验室变量可用于预测少关节型JIA患者AU病程的严重程度,但不能预测其发病。更准确的预测可以缩短或延长眼科评估的间隔时间,并可改变基于预期疾病严重程度所采取的治疗方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验