Phase transitions in sonicated (vesicles) and unsonicated liposomes composed of various synthetic phosphatidylcholines are monitored using differential scanning calorimetry and 31P NMR. 2. The temperature (Tc), heat content and width of the phase transition are comparable in both vesicles and liposomes prepared from 1,2-dipalmitoyl phosphatidylcholine and 1,2-dimyristoyl phosphatidylcholine. In vesicles composed of a (1 : 1) mixture of 1,2-dipalmitoyl phosphatidylcholine and 1,2-dioleoyl phosphatidylcholine phase separation occurs as in the bilayers of the unsonicated liposomes. 3. The linewidth of the 31P resonances in vesicles is not greatly dependent upon the fatty acid composition when the lipids are in the disordered liquid crystalline state (above Tc). When the lipids are in the gel state (below Tc), however, there is a marked increase in linewidth, demonstrating a reduction in motion of the phosphate group. 4. The ratio of the amounts of phosphatidylcholine present in the outside and inside monolayter of the vesicle membrane was determined with 31P NMR using Nd3+ as a non-permeating shift reagent. 5. The outside/inside ratio is dependent upon the hydrocarbon chain length. Increasing chain length gives a lower outside/inside ratio and a larger vesicle. Introduction of cis or trans double bonds in the chain influences the outside/inside ratio slightly. 6. The incorporation of cholesterol decreases the outside/inside ratio and increases the size of 1,2-dimyristoyl phosphatidylcholine vesicles. The cholesterol concentration in the outside and inside monolayer is approximately the same. The size of the 1,2-dioleoyl phosphatidylcholine vesicles is also increased by cholesterol incorporation but the outside/inside distribution is also increased, especially between 30 and 50 mol% cholesterol. In these vesicles cholesterol is asymmetrically distributed and strongly prefers the inside monolayer of the vesicle.