Suppr超能文献

演绎基因组学:在后基因组时代识别创新药物靶点的功能方法。

Deductive genomics: a functional approach to identify innovative drug targets in the post-genome era.

作者信息

Stumm Gabriele, Russ Andreas, Nehls Michael

机构信息

Ingenium Pharmaceuticals AG, Martinsried, Germany.

出版信息

Am J Pharmacogenomics. 2002;2(4):263-71. doi: 10.2165/00129785-200202040-00006.

Abstract

The sequencing of the human genome has generated a drug discovery process that is based on sequence analysis and hypothesis-driven (inductive) prediction of gene function. This approach, which we term inductive genomics, is currently dominating the efforts of the pharmaceutical industry to identify new drug targets. According to recent studies, this sequence-driven discovery process is paradoxically increasing the average cost of drug development, thus falling short of the promise of the Human Genome Project to simplify the creation of much needed novel therapeutics. In the early stages of discovery, the flurry of new gene sequences makes it difficult to pick and prioritize the most promising product candidates for product development, as with existing technologies important decisions have to be based on circumstantial evidence that does not strongly predict therapeutic potential. This is because the physiological function of a potential target cannot be predicted by gene sequence analysis and in vitro technologies alone. In contrast, deductive genomics, or large-scale forward genetics, bridges the gap between sequence and function by providing a function-driven in vivo screen of a highly orthologous mammalian model genome for medically relevant physiological functions and drug targets. This approach allows drug discovery to move beyond the focus on sequence-driven identification of new members of classical drug-able protein families towards the biology-driven identification of innovative targets and biological pathways.

摘要

人类基因组测序催生了一种基于序列分析和基因功能假设驱动(归纳)预测的药物发现过程。我们将这种方法称为归纳基因组学,它目前主导着制药行业识别新药物靶点的工作。根据最近的研究,这种由序列驱动的发现过程自相矛盾地增加了药物开发的平均成本,因此未能实现人类基因组计划所承诺的简化急需的新型疗法的创造。在发现的早期阶段,大量新的基因序列使得难以挑选出最有前景的产品候选物并对其进行优先排序以用于产品开发,因为对于现有技术而言,重要决策必须基于不能有力预测治疗潜力的间接证据。这是因为潜在靶点的生理功能不能仅通过基因序列分析和体外技术来预测。相比之下,演绎基因组学,即大规模正向遗传学,通过为医学相关生理功能和药物靶点提供一个功能驱动的高度直系同源哺乳动物模型基因组的体内筛选,弥合了序列与功能之间的差距。这种方法使药物发现能够超越专注于序列驱动识别经典可成药蛋白家族新成员的范畴,转向生物学驱动识别创新靶点和生物途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验