Suppr超能文献

通过消减基因组学方法鉴定致病细菌2a的潜在药物靶点和抑制剂。

Identification of potential drug targets and inhibitor of the pathogenic bacteria 2a through the subtractive genomic approach.

作者信息

Oany Arafat Rahman, Mia Mamun, Pervin Tahmina, Hasan Md Nazmul, Hirashima Akinori

机构信息

1Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University, Tangail, 1902 Bangladesh.

2Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.

出版信息

In Silico Pharmacol. 2018 Jun 4;6(1):11. doi: 10.1007/s40203-018-0048-2. eCollection 2018.

Abstract

2a is one of the most pathogenic bacteria among the spp., which is responsible for dysentery and causes masses of deaths throughout the world per year. A proper identification of the potential drug targets and inhibitors is crucial for the treatment of the shigellosis due to their emerging multidrug resistance (MDR) patterns. In this study, a systematic subtractive approach was implemented for the identification of novel therapeutic targets of 2a (301) through genome-wide metabolic pathway analysis of the essential genes and proteins. Ligand-based virtual screening and ADMET analyses were also made for the identification of potential inhibitors as well. Initially, we found 70 essential unique proteins as novel targets. After subsequent prioritization, finally we got six unique targets as the potential therapeutic targets and their three-dimensional models were built thereafter. Aspartate-β-semialdehyde dehydrogenase (ASD), was the most potent target among them and used for docking analysis through ligand-based virtual screening. The compound 3 (PubChem CID: 11319750) suited well as the best inhibitor of the ASD through ADMET and enzyme inhibition capacity analysis. To end, we hope that our proposed therapeutic targets and its inhibitors might give some breakthrough to treat shigellosis efficiently in in vitro.

摘要

宋内志贺菌2a是志贺菌属中致病性最强的细菌之一,可引发痢疾,每年在全球导致大量死亡。鉴于其新出现的多重耐药模式,正确识别潜在的药物靶点和抑制剂对于治疗志贺菌病至关重要。在本研究中,通过对必需基因和蛋白质进行全基因组代谢途径分析,采用系统的消减方法来识别宋内志贺菌2a(301)的新型治疗靶点。还进行了基于配体的虚拟筛选和ADMET分析以识别潜在抑制剂。最初,我们发现70种必需的独特蛋白质作为新靶点。经过后续的优先级排序,最终我们得到六个独特靶点作为潜在治疗靶点,并随后构建了它们的三维模型。天冬氨酸-β-半醛脱氢酶(ASD)是其中最有效的靶点,并通过基于配体的虚拟筛选用于对接分析。通过ADMET和酶抑制能力分析,化合物3(PubChem CID:11319750)作为ASD的最佳抑制剂表现良好。最后,我们希望我们提出的治疗靶点及其抑制剂可能会为体外有效治疗志贺菌病带来一些突破。

相似文献

1
Identification of potential drug targets and inhibitor of the pathogenic bacteria 2a through the subtractive genomic approach.
In Silico Pharmacol. 2018 Jun 4;6(1):11. doi: 10.1007/s40203-018-0048-2. eCollection 2018.
2
Finding Potential Therapeutic Targets against through Proteome Exploration.
Front Microbiol. 2016 Nov 22;7:1817. doi: 10.3389/fmicb.2016.01817. eCollection 2016.
3
Genome sequence of Shigella flexneri strain SP1, a diarrheal isolate that encodes an extended-spectrum β-lactamase (ESBL).
Ann Clin Microbiol Antimicrob. 2017 May 12;16(1):37. doi: 10.1186/s12941-017-0212-2.
4
Stable Chromosomal Expression of Shigella flexneri 2a and 3a O-Antigens in the Live Salmonella Oral Vaccine Vector Ty21a.
Clin Vaccine Immunol. 2017 Dec 5;24(12). doi: 10.1128/CVI.00181-17. Print 2017 Dec.
5
Shigellosis Caused by CTX-M Type ESBL Producing in Two Siblings of Rural Nepal: First Case Report from the Country.
Case Rep Infect Dis. 2017;2017:1862320. doi: 10.1155/2017/1862320. Epub 2017 Feb 21.
6
Genomic Analysis and Resistance Mechanisms in Shigella flexneri 2a Strain 301.
Microb Drug Resist. 2018 Apr;24(3):323-336. doi: 10.1089/mdr.2016.0173. Epub 2017 Aug 30.
8
Characterization and Genomic Analysis of SFPH2, a Novel Infecting .
Front Microbiol. 2018 Dec 14;9:3027. doi: 10.3389/fmicb.2018.03027. eCollection 2018.
9
Shigellosis.
J Microbiol. 2005 Apr;43(2):133-43.
10
Vaccination against shigellosis with attenuated Shigella flexneri 2a strain SC602.
Infect Immun. 1999 Jul;67(7):3437-43. doi: 10.1128/IAI.67.7.3437-3443.1999.

引用本文的文献

1
Pantothenate kinase: A promising therapeutic target against pathogenic species.
Heliyon. 2024 Jul 14;10(14):e34544. doi: 10.1016/j.heliyon.2024.e34544. eCollection 2024 Jul 30.

本文引用的文献

2
ADME SARfari: comparative genomics of drug metabolizing systems.
Bioinformatics. 2015 May 15;31(10):1695-7. doi: 10.1093/bioinformatics/btv010. Epub 2015 Jan 8.
5
Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach.
Comput Biol Chem. 2014 Oct;52:66-72. doi: 10.1016/j.compbiolchem.2014.09.005. Epub 2014 Sep 18.
6
Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach.
Drug Des Devel Ther. 2014 Aug 21;8:1139-49. doi: 10.2147/DDDT.S67861. eCollection 2014.
7
Lead- and drug-like compounds: the rule-of-five revolution.
Drug Discov Today Technol. 2004 Dec;1(4):337-41. doi: 10.1016/j.ddtec.2004.11.007.
10
STRING v9.1: protein-protein interaction networks, with increased coverage and integration.
Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15. doi: 10.1093/nar/gks1094. Epub 2012 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验