Masson Guillaume S, Stone Leland S
Centre de Recherche en Neurosciences Cognitives, Centre National de la Recherche Scientifique, F13402 Marseille, France.
J Neurophysiol. 2002 Nov;88(5):2869-73. doi: 10.1152/jn.00987.2001.
Primates can generate accurate, smooth eye-movement responses to moving target objects of arbitrary shape and size, even in the presence of complex backgrounds and/or the extraneous motion of non-target objects. Most previous studies of pursuit have simply used a spot moving over a featureless background as the target and have thus neglected critical issues associated with the general problem of recovering object motion. Visual psychophysicists and theoreticians have shown that, for arbitrary objects with multiple features at multiple orientations, object-motion estimation for perception is a complex, multi-staged, time-consuming process. To examine the temporal evolution of the motion signal driving pursuit, we recorded the tracking eye movements of human observers to moving line-figure diamonds. We found that pursuit is initially biased in the direction of the vector average of the motions of the diamond's line segments and gradually converges to the true object-motion direction with a time constant of approximately 90 ms. Furthermore, transient blanking of the target during steady-state pursuit induces a decrease in tracking speed, which, unlike pursuit initiation, is subsequently corrected without an initial direction bias. These results are inconsistent with current models in which pursuit is driven by retinal-slip error correction. They demonstrate that pursuit models must be revised to include a more complete visual afferent pathway, which computes, and to some extent latches on to, an accurate estimate of object direction over the first hundred milliseconds or so of motion.
灵长类动物能够对任意形状和大小的移动目标物体产生准确、平滑的眼球运动反应,即使存在复杂背景和/或非目标物体的额外运动。以往大多数关于追踪的研究只是简单地将一个在无特征背景上移动的点作为目标,因此忽略了与恢复物体运动这一普遍问题相关的关键问题。视觉心理物理学家和理论家已经表明,对于具有多个方向上多个特征的任意物体,用于感知的物体运动估计是一个复杂、多阶段、耗时的过程。为了研究驱动追踪的运动信号的时间演变,我们记录了人类观察者对移动的线状菱形图形的追踪眼球运动。我们发现,追踪最初偏向于菱形线段运动的矢量平均方向,并以大约90毫秒的时间常数逐渐收敛到真实的物体运动方向。此外,在稳态追踪期间目标的短暂消隐会导致追踪速度下降,与追踪启动不同的是,随后这种下降会在没有初始方向偏差的情况下得到纠正。这些结果与当前认为追踪由视网膜滑动误差校正驱动的模型不一致。它们表明,追踪模型必须进行修订,以纳入更完整的视觉传入通路,该通路在运动的最初大约一百毫秒内计算并在一定程度上锁定物体方向的准确估计。