Ledger Thomas, Pieper Dietmar H, Pérez-Pantoja Danilo, González Bernardo
Laboratorio de Microbiologı́a, Departamento de Genética Molecular y Microbiologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D Santiago, Chile1.
Division of Microbiology, National Research Centre for Biotechnology - GBF, Braunschweig, Germany2.
Microbiology (Reading). 2002 Nov;148(Pt 11):3431-3440. doi: 10.1099/00221287-148-11-3431.
Many bacteria can grow on chloroaromatic pollutants because they can transform them into chlorocatechols, which are further degraded by enzymes of a specialized ortho-cleavage pathway. Ralstonia eutropha JMP134 is able to grow on 3-chlorobenzoate by using two pJP4-encoded, ortho-cleavage chlorocatechol degradation gene clusters (tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II)). Very little is known about the acquisition of new catabolic genes encoding enzymes that lead to the formation of chlorocatechols in R. eutropha JMP134. The effect on the catabolic properties of an R. eutropha JMP134 derivative that received the xylS-xylXYZL gene module, encoding the xylS-regulated expression of the broad-substrate-range toluate 1,2-dioxygenase (xylXYZ) and the 1,2-dihydro-1,2-dihydroxytoluate dehydrogenase (xylL) from pWW0, which allows the transformation of 4-chlorobenzoate into 4-chlorocatechol, was studied. Such a derivative could efficiently grow on 4-chlorobenzoate. Unexpectedly, this derivative also grew on 3,5-dichlorobenzoate, a substrate for XylXYZL but not an inducer of the XylS regulatory protein. The ability to grow on 4-chlorobenzoate or 3,5-dichlorobenzoate was also observed in derivatives of strain JMP134 containing the xyl gene module but lacking xylS, indicating the presence of an xylS-like element in R. eutropha with an inducer profile different from that of the pWW0-encoded regulator. Growth on 4-chlorobenzoate was also observed after introduction of the xyl gene module into strain JMP222, a JMP134 derivative lacking pJP4, but only if multiple copies of tfdC(I)D(I)E(I)F(I) or tfdD(II)C(II)E(II)F(II) were present. However, only the derivative containing multiple copies of tfdD(II)C(II)E(II)F(II) was able to grow on 3,5-dichlorobenzoate. These observations indicate that although the acquisition of new catabolic genes actually enhances the catabolic abilities of R. eutropha JMP134, these new properties are strongly influenced by the dosage of the tfd genes, the presence of a chromosomal xylS-like regulatory element and the different contributions of the tfd gene clusters.
许多细菌能够在氯代芳香污染物上生长,因为它们可以将这些污染物转化为氯代儿茶酚,而氯代儿茶酚会通过一种特殊的邻位裂解途径的酶进一步降解。真养产碱菌JMP134能够利用两个由pJP4编码的、邻位裂解氯代儿茶酚降解基因簇(tfdC(I)D(I)E(I)F(I)和tfdD(II)C(II)E(II)F(II))在3-氯苯甲酸上生长。关于真养产碱菌JMP134中编码导致氯代儿茶酚形成的酶的新分解代谢基因的获得情况,人们了解甚少。研究了真养产碱菌JMP134衍生物接受xylS-xylXYZL基因模块后的分解代谢特性,该基因模块编码来自pWW0的木糖S调节的广谱底物甲苯酸1,2-双加氧酶(xylXYZ)和1,2-二氢-1,2-二羟基甲苯酸脱氢酶(xylL)的表达,这使得4-氯苯甲酸能够转化为4-氯代儿茶酚。这样的衍生物能够在4-氯苯甲酸上高效生长。出乎意料的是,该衍生物也能在3,5-二氯苯甲酸上生长,3,5-二氯苯甲酸是XylXYZL的底物,但不是木糖S调节蛋白的诱导物。在含有木糖基因模块但缺乏木糖S的JMP134菌株衍生物中也观察到了在4-氯苯甲酸或3,5-二氯苯甲酸上生长的能力,这表明真养产碱菌中存在一种与木糖S类似的元件,其诱导特性与pWW0编码的调节因子不同。将木糖基因模块导入JMP222(一种缺乏pJP4的JMP134衍生物)后,也观察到了在4-氯苯甲酸上的生长,但前提是存在多个拷贝的tfdC(I)D(I)E(I)F(I)或tfdD(II)C(II)E(II)F(II)。然而,只有含有多个拷贝tfdD(II)C(II)E(II)F(II)的衍生物能够在3,5-二氯苯甲酸上生长。这些观察结果表明,尽管新分解代谢基因的获得实际上增强了真养产碱菌JMP134的分解代谢能力,但这些新特性受到tfd基因剂量、染色体上类似木糖S的调节元件的存在以及tfd基因簇不同贡献的强烈影响。