Suppr超能文献

Effects of neonatal dietary manganese exposure on brain dopamine levels and neurocognitive functions.

作者信息

Tran Trinh T, Chowanadisai Winyoo, Lönnerdal Bo, Le Louis, Parker Michael, Chicz-Demet Aleksandra, Crinella Francis M

机构信息

Department of Nutrition, University of California, Davis, USA.

出版信息

Neurotoxicology. 2002 Oct;23(4-5):645-51. doi: 10.1016/s0161-813x(02)00068-2.

Abstract

Neonatal exposure to high levels of manganese (Mn) has been indirectly implicated as a causal agent in attention deficit hyperactivity disorder (ADHD), since Mn toxicity and ADHD both involve dysfunction in brain dopamine (DA) systems. This study was undertaken to examine this putative relationship in an animal model by determining if levels of neonatal dietary Mn exposure were related to brain DA levels and/or behavioral tests of executive function (EF) when the animals reached maturity. We used 32 newborn male Sprague-Dawley rats and randomly assigned them to one of the four dietary Mn supplementation conditions: 0, 50, 250 and 500 microg per day, administered daily in water from postnatal days 1-21. During days 50-64, the animals were given a burrowing detour test and a passive avoidance test. At day 65, the animals were killed and brains were assayed for DA. There was a statistically significant relationship (P = 0.003) between dietary Mn exposure and striatal DA. On the burrowing detour and passive avoidance, greater deficits were observed for animals subjected to higher Mn exposure, but these differences did not reach statistical significance. However, tests for heterogeneity of variance between groups were statistically significant for all measures, with positive relationship between Mn exposure and degree of within-group behavioral variability. Kendall's nonparametric test of the relationship between the three behavioral measures and striatal DA levels was also statistically significant (P = 0.02). These results lend support to the hypothesis that neonatal Mn exposure is related to brain DA levels and neurocognitive deficit in the rodent.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验