Suppr超能文献

凋亡机制是否调节突触可塑性和生长锥运动性?

Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility?

作者信息

Gilman Charles P, Mattson Mark P

机构信息

Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, MD 21224, USA.

出版信息

Neuromolecular Med. 2002;2(2):197-214. doi: 10.1385/NMM:2:2:197.

Abstract

Signals between neurons are transduced primarily by receptors, and second messenger and kinase cascades, located in pre- and postsynaptic terminals. Such synaptic signaling pathways include those activated by neurotransmitters, cytokines, neurotrophic factors, and cell-adhesion molecules. Many of these signaling systems are also localized in the growth cones of axons and dendrites, where they control pathfinding and synaptogenesis during development. Although it has been known for decades that such signaling pathways can affect the survival of neurons, by promoting or preventing a form of programmed cell death known as apoptosis, we have discovered that apoptotic biochemical cascades can exert local actions on the functions and structural dynamics of growth cones and synapses. In this article, we provide a brief background on apoptotic biochemical cascades, and present examples of studies in this laboratory that have identified novel apoptotic and anti-apoptotic signaling mechanisms that are activated and act locally in synapses, growth cones, and dendrites to modify their structure and function. Apoptotic synaptic cascades that may play roles in neuronal plasticity include activation of caspases that can cleave certain types of ionotropic glutamate-receptor subunits and thereby modify synaptic plasticity. Caspases may also cleave cytoskeletal protein substrates in growth cones of developing neurons and may thereby regulate neurite outgrowth. Par-4 and the tumor-suppressor protein p53 are pro-apoptotic proteins that may also function in synaptic and developmental plasticity. Examples of anti-apoptotic signals that regulate the plasticity of growth cones and synapses include neurotrophic factor-activated kinase cascades, calcium-mediated actin depolymerization, and activation of the transcription factor NF-kappaB. The emerging data strongly suggest that many of the signaling mechanisms that control apoptosis are also involved in regulating the structural and functional plasticity of neuronal circuits under physiological conditions.

摘要

神经元之间的信号主要通过位于突触前和突触后终末的受体、第二信使和激酶级联反应进行转导。此类突触信号通路包括由神经递质、细胞因子、神经营养因子和细胞黏附分子激活的通路。这些信号系统中的许多也定位于轴突和树突的生长锥中,在发育过程中控制路径寻找和突触形成。尽管数十年来人们已经知道此类信号通路可通过促进或阻止一种称为凋亡的程序性细胞死亡形式来影响神经元的存活,但我们发现凋亡生化级联反应可对生长锥和突触的功能及结构动力学发挥局部作用。在本文中,我们简要介绍凋亡生化级联反应的背景,并展示本实验室的研究实例,这些研究确定了新的凋亡和抗凋亡信号机制,它们在突触、生长锥和树突中被激活并局部发挥作用,以改变其结构和功能。可能在神经元可塑性中起作用的凋亡性突触级联反应包括半胱天冬酶的激活,半胱天冬酶可切割某些类型的离子型谷氨酸受体亚基,从而改变突触可塑性。半胱天冬酶还可能切割发育中神经元生长锥中的细胞骨架蛋白底物,从而调节神经突生长。Par-4和肿瘤抑制蛋白p53是促凋亡蛋白,它们也可能在突触和发育可塑性中发挥作用。调节生长锥和突触可塑性的抗凋亡信号实例包括神经营养因子激活的激酶级联反应、钙介导的肌动蛋白解聚以及转录因子NF-κB的激活。新出现的数据强烈表明,许多控制凋亡的信号机制在生理条件下也参与调节神经回路的结构和功能可塑性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验