Lowthian Philip J, Thompson Michael
School of Biological and Chemical Sciences, Birkbeck College, University of London, UK.
Analyst. 2002 Oct;127(10):1359-64. doi: 10.1039/b205600n.
Kernel density estimation is a method for producing a smooth density approximation to a dataset and avoiding some of the problems associated with histograms. If it is used with a degree of smoothing determined by a fitness for purpose criterion, it can be applied to proficiency test data in order to test for multimodality in the z-scores. The bootstrap is an essential additional technique to determine how rugged the initially estimated kernel density is: the random resampling of the data in the bootstrap simulates a complete blind repeat of the proficiency test. In addition, useful estimates of the standard error of a mode can be thus obtained. It is suggested that a mode and its standard error can be used as an assigned value and its standard uncertainty.
核密度估计是一种用于生成数据集平滑密度近似值并避免与直方图相关的一些问题的方法。如果将其与根据适用标准确定的平滑度一起使用,它可应用于能力验证测试数据,以检验z分数中的多峰性。自助法是一种重要的附加技术,用于确定最初估计的核密度有多不稳定:自助法中对数据的随机重采样模拟了能力验证测试的完全盲目重复。此外,由此可以获得众数标准误差的有用估计值。建议将众数及其标准误差用作赋值及其标准不确定度。