Cuchillo-Ibanez Inmaculada, Albillos Almudena, Aldea Marcos, Arroyo Gloria, Fuentealba Jorge, Garcia Antonio G
Instituto Teófilo Hernando, Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
Ann N Y Acad Sci. 2002 Oct;971:108-16. doi: 10.1111/j.1749-6632.2002.tb04444.x.
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca(2+) concentration, Ca(2+), depend on at least three efficient regulatory mechanisms: (1) the plasmalemmal Ca(2+) channels; (2) the endoplasmic reticulum (ER); and (3) the mitochondria. High-voltage activated Ca(2+) channels of the L, N, P/Q, and R subtypes are expressed with different densities in various mammalian species; they are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of Ca(2+). Targeted aequorin and confocal microscopy show that Ca(2+) entry through Ca(2+) channels can refill the ER to near millimolar concentrations and causes the release of ER Ca(2+) (CICR). We have also seen that, depending on its degree of filling, the ER may act as a sink or source of Ca(2+) that modulates the release of catecholamine. Targeted aequorins with different Ca(2+) affinities show that mitochondria undergo surprisingly rapid millimolar Ca(2+) transients (Ca(2+)) upon stimulation of chromaffin cells with ACh, high K(+), or caffeine. Physiological stimuli generate Ca(2+) microdomains at these functional complexes in which the local subplasmalemmal Ca(2+) rises abruptly from 0.1 micro M to about 50 micro M. This triggers CICR, mitochondrial Ca(2+) uptake, and exocytosis in nearby secretory active sites. That this is true is shown by the observation that protonophores abolish mitochondrial Ca(2+) uptake and drastically increase catecholamine release by 3- to 5-fold. This increase is likely due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; such transport might be controlled by Ca(2+) redistribution to the cytoskeleton, through CICR and/or mitochondrial Ca(2+) release.
在嗜铬细胞的特定胞质区域,钙离子浓度Ca(2+)的速率和幅度至少取决于三种有效的调节机制:(1) 质膜钙离子通道;(2) 内质网(ER);以及(3) 线粒体。L、N、P/Q和R亚型的高压激活钙离子通道在不同哺乳动物物种中以不同密度表达;它们受与嘌呤能和阿片受体偶联的G蛋白、电压以及Ca(2+)的局部变化调节。靶向水母发光蛋白和共聚焦显微镜显示,通过钙离子通道进入的钙离子可将内质网重新填充至接近毫摩尔浓度,并导致内质网钙离子释放(钙诱导钙释放,CICR)。我们还发现,内质网根据其充盈程度,可能充当调节儿茶酚胺释放的钙离子汇或源。具有不同钙离子亲和力的靶向水母发光蛋白显示,在用乙酰胆碱、高钾或咖啡因刺激嗜铬细胞时,线粒体经历惊人的快速毫摩尔级钙离子瞬变(Ca(2+))。生理刺激在这些功能复合物处产生Ca(2+)微区,其中局部质膜下Ca(2+)从0.1微摩尔突然升至约50微摩尔。这触发了钙诱导钙释放、线粒体钙离子摄取以及附近分泌活性位点的胞吐作用。质子载体消除线粒体钙离子摄取并使儿茶酚胺释放急剧增加3至5倍,这一观察结果表明情况确实如此。这种增加可能是由于囊泡从储备池转运至即时释放囊泡池的加速;这种转运可能通过钙诱导钙释放和/或线粒体钙离子释放导致的钙离子重新分布到细胞骨架来控制。