Suppr超能文献

重组黄病毒RNA依赖性RNA聚合酶从头起始RNA合成的要求。

Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases.

作者信息

Ranjith-Kumar C T, Gutshall Les, Kim Min-Ju, Sarisky Robert T, Kao C Cheng

机构信息

Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA.

出版信息

J Virol. 2002 Dec;76(24):12526-36. doi: 10.1128/jvi.76.24.12526-12536.2002.

Abstract

RNA-dependent RNA polymerases (RdRps) that initiate RNA synthesis by a de novo mechanism should specifically recognize the template initiation nucleotide, T1, and the substrate initiation nucleotide, the NTPi. The RdRps from hepatitis C virus (HCV), bovine viral diarrhea virus (BVDV), and GB virus-B all can initiate RNA synthesis by a de novo mechanism. We used RNAs and GTP analogs, respectively, to examine the use of the T1 nucleotide and the initiation nucleotide (NTPi) during de novo initiation of RNA synthesis. The effects of the metal ions Mg(2+) and Mn(2+) on initiation were also analyzed. All three viral RdRps require correct base pairing between the T1 and NTPi for efficient RNA synthesis. However, each RdRp had some distinct tolerances for modifications in the T1 and NTPi. For example, the HCV RdRp preferred an NTPi lacking one or more phosphates regardless of whether Mn(2+) was present or absent, while the BVDV RdRp efficiently used GDP and GMP for initiation of RNA synthesis only in the presence of Mn(2+). These and other results indicate that although the three RdRps share a common mechanism of de novo initiation, each has distinct preferences.

摘要

通过从头合成机制起始RNA合成的RNA依赖性RNA聚合酶(RdRps)应特异性识别模板起始核苷酸T1和底物起始核苷酸NTPi。丙型肝炎病毒(HCV)、牛病毒性腹泻病毒(BVDV)和GB病毒B的RdRps都可以通过从头合成机制起始RNA合成。我们分别使用RNA和GTP类似物来研究RNA合成从头起始过程中T1核苷酸和起始核苷酸(NTPi)的使用情况。还分析了金属离子Mg(2+)和Mn(2+)对起始的影响。所有三种病毒RdRps都需要T1和NTPi之间正确的碱基配对才能进行有效的RNA合成。然而,每种RdRp对T1和NTPi修饰都有一些不同的耐受性。例如,无论是否存在Mn(2+) ,HCV RdRp都更喜欢缺少一个或多个磷酸基团的NTPi,而BVDV RdRp仅在存在Mn(2+)时才能有效地使用GDP和GMP起始RNA合成。这些以及其他结果表明,尽管这三种RdRps具有共同的从头起始机制,但每种都有不同的偏好。

相似文献

1
Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases.
J Virol. 2002 Dec;76(24):12526-36. doi: 10.1128/jvi.76.24.12526-12536.2002.
2
Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals.
J Virol. 2002 Dec;76(24):12513-25. doi: 10.1128/jvi.76.24.12513-12525.2002.
4
5
Enzymatic activities of the GB virus-B RNA-dependent RNA polymerase.
Virology. 2003 Aug 1;312(2):270-80. doi: 10.1016/s0042-6822(03)00247-2.
6
De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase.
J Virol. 2000 Feb;74(4):2017-22. doi: 10.1128/jvi.74.4.2017-2022.2000.
8
De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus.
J Virol. 2000 Jan;74(2):851-63. doi: 10.1128/jvi.74.2.851-863.2000.
10
Multiple interactions within the hepatitis C virus RNA polymerase repress primer-dependent RNA synthesis.
J Mol Biol. 2003 Jul 18;330(4):675-85. doi: 10.1016/s0022-2836(03)00613-2.

引用本文的文献

1
Structure-functional characterization of Lactococcus AbiA phage defense system.
Nucleic Acids Res. 2024 May 8;52(8):4723-4738. doi: 10.1093/nar/gkae230.
2
Binding of Nucleotide Inhibitors to the NS5 RdRp of the ZIKA Virus in the Replication Initiation State.
Curr Med Chem. 2025;32(12):2460-2476. doi: 10.2174/0109298673259914231213052438.
3
Reverse transcriptases prime DNA synthesis.
Nucleic Acids Res. 2023 Aug 11;51(14):7125-7142. doi: 10.1093/nar/gkad478.
4
Advancement in the Development of Therapeutics Against Zika Virus Infection.
Front Cell Infect Microbiol. 2022 Jul 8;12:946957. doi: 10.3389/fcimb.2022.946957. eCollection 2022.
5
Guanosine inhibits hepatitis C virus replication and increases indel frequencies, associated with altered intracellular nucleotide pools.
PLoS Pathog. 2022 Jan 27;18(1):e1010210. doi: 10.1371/journal.ppat.1010210. eCollection 2022 Jan.
7
SARS-CoV-2 spike protein and RNA dependent RNA polymerase as targets for drug and vaccine development: A review.
Biosaf Health. 2021 Oct;3(5):249-263. doi: 10.1016/j.bsheal.2021.07.003. Epub 2021 Jul 21.
8
Prediction of Small Molecule Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus-2 RNA-dependent RNA Polymerase.
ACS Omega. 2020 Jul 14;5(29):18356-18366. doi: 10.1021/acsomega.0c02096. eCollection 2020 Jul 28.
10
RNA-Dependent RNA Polymerase as a Target for COVID-19 Drug Discovery.
SLAS Discov. 2020 Dec;25(10):1141-1151. doi: 10.1177/2472555220942123. Epub 2020 Jul 13.

本文引用的文献

1
Lessons learned from the core RNA promoters of Brome mosaic virus and Cucumber mosaic virus.
Mol Plant Pathol. 2002 Jan 1;3(1):53-9. doi: 10.1046/j.1464-6722.2001.00090.x.
2
Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals.
J Virol. 2002 Dec;76(24):12513-25. doi: 10.1128/jvi.76.24.12513-12525.2002.
3
Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase.
J Virol. 2002 Apr;76(8):3865-72. doi: 10.1128/jvi.76.8.3865-3872.2002.
4
Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides.
J Virol. 2002 Apr;76(7):3482-92. doi: 10.1128/jvi.76.7.3482-3492.2002.
5
Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase.
J Biol Chem. 2002 Jan 11;277(2):1381-7. doi: 10.1074/jbc.M109261200. Epub 2001 Oct 24.
7
De novo initiation of viral RNA-dependent RNA synthesis.
Virology. 2001 Sep 1;287(2):251-60. doi: 10.1006/viro.2001.1039.
8
Completion of RNA synthesis by viral RNA replicases.
Nucleic Acids Res. 2001 Sep 1;29(17):3576-82. doi: 10.1093/nar/29.17.3576.
10
A mechanism for initiating RNA-dependent RNA polymerization.
Nature. 2001 Mar 8;410(6825):235-40. doi: 10.1038/35065653.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验